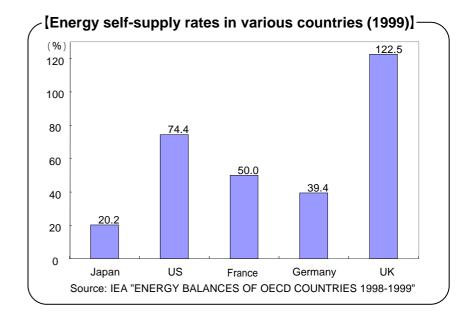
Present Situation and Issues on New Energy

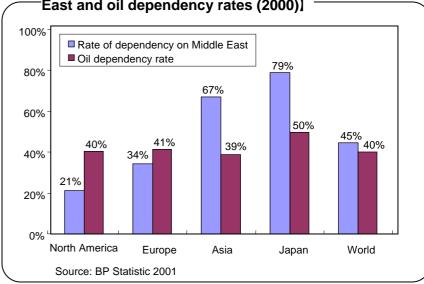
May 2003

New and Renewable Energy Division
Agency of Natural Resources and Energy

Japan's Energy Situation Compared with the World

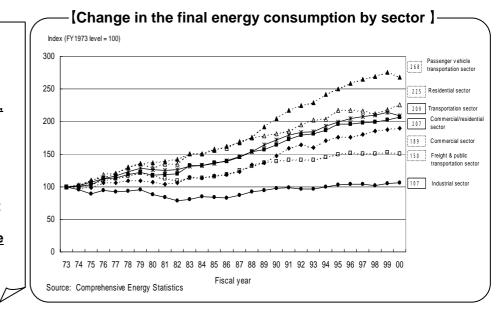

Characteristics

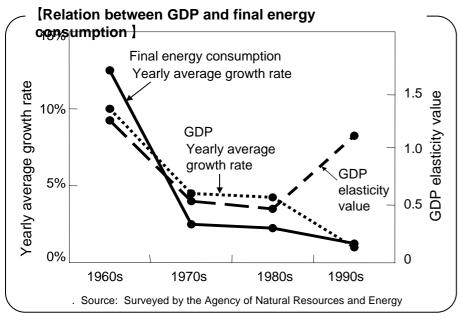
- Japan has worked to promote energy conservation and the introduction of oil-alternative energy, such as nuclear power, since the two Oil Crises, resulting in a reduction of oil dependency to about 50%.
- However, <u>the energy self-supply rate of Japan</u>, which does not have much energy resources within the country, <u>is still very low, at about 20%, compared with other</u> <u>major countries</u>.
- Especially compared with the West, <u>Japan's oil</u>
 dependency continues to be high, and dependency on
 the Middle East for oil is high. As such, <u>Japan's</u>
 energy supply structure is relatively weak.

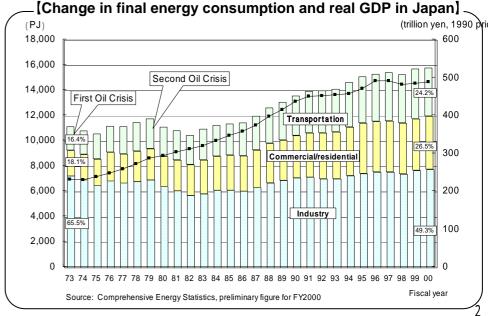

[Primary energy supply and the ratios in major countries (1999)]

(%) US UK Japan France Germany Primary energy supply (million tons of oil equivalent) 515 2270 337 255 230 Coal 17 24 24 6 15 Oil 52 39 35 40 36 Natural gas 12 23 21 14 36 16 Nuclear 40 13 11 2.4 0.2 Hydro 1.4 1.1 0.5 Renewable energy, etc. 5

Source: IE A "ENERGY BALANCES OF OECD COUNTRIES 1998-1999"






Japan's Energy Demand Trend

Characteristics

- Energy consumption, which is essential for economic activities, greatly increased in association with high economic growth in the 1960s.
- In the 1970s and 1980s, energy conservation and economic growth were simultaneously achieved through energy-conservation efforts, centered on the industrial sector, and by every class of citizens, after two Oil Crises in the 1970s. (The GDP elasticity value for energy consumption was about 0.5. In particular, consumption in the industrial sector stayed lower than at the time of the first Oil Crisis.)
- In the 1990s, when Japan faced a sluggish economy, energy consumption growth stayed low in association with economic growth, but it exceeded the GDP growth rate (the GDP elasticity value for energy consumption was 1.14). Due to the spreading of lifestyles that pursue comfort and convenience, and for other reasons, energy consumption greatly increased consistently, centered on the commercial/residential and transportation sectors.

Japan's Energy Supply Trend

Characteristics

- As to Japan's energy supply, domestic coal lost competitiveness in the 1960s, which was substituted by oil, and oil accounted for the majority of primary energy supply, at 80%.
- After the two Oil Crises in the 1970s, <u>introduction of oil-alternative energy</u>, such as foreign coal, natural gas, and nuclear power, <u>under an oil-alternative policy</u>, <u>was promoted</u>, <u>and oil dependency significantly decreased</u>, to about 50% (from 77% in FY1973 to 52% in FY2000).
- In the 1990s, needs for higher efficiency in energy supply increased, but due to restricted supply of nuclear and renewable energy, the majority of energy supply necessary for economic growth was still fossil fuels.

Fossil fuel dependency rate: 85% (FY1990) to 83% (FY2000) GDP elasticity value of fossil fuel supply volume: 0.4 (1980s) to 0.9 (1990s)

[Relation between GDP and primary energy supply]

	Yearly	average grov	vth rate (%)		F761	F		
Period	Primary energy supply	Fossil fuel supply	Energy- originating CO ₂ emissions	GDP	Primary energy supply versus GDP elasticity value	Fossil fuel supply versus GDP elasticity value	Energy- originating CO2 emissions versus GDP elasticity value	
1960 ~ 1970	12.2%	14.0%	-	10.0%	1.2	1.4	-	
1970 ~ 1980	2.2%	1.8%	1.9%	4.4%	0.5	0.4	0.4	
1980 ~ 1990	2.0%	1.6%	1.3%	4.2%	0.5	0.4	0.3	
1990 ~ 2000	1.4%	1.1%	1.0%	1.3%	1.1	0.9	0.7	

Source: Surveyed by the Agency of Natural Resources and Energy

[Change in primary energy supply]

(%)

			` '
	FY1973	FY1990	FY2000
Primary energy			
supply (million kl of			
crude oil equivalent)	414	526	604
Oil	77	58	52
Coal	15	17	18
Natural gas	2	10	13
Nuclear	1	9	12
Hydro	4	4	3
Geothermal	0	0.1	0.2
New energy, etc.	1	1	1

Source: Comprehensive Energy Statistics

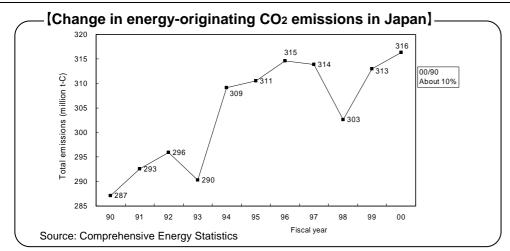
-[Change in electric energy generated by electric sources in Japan (for general electric industry)]

(%)

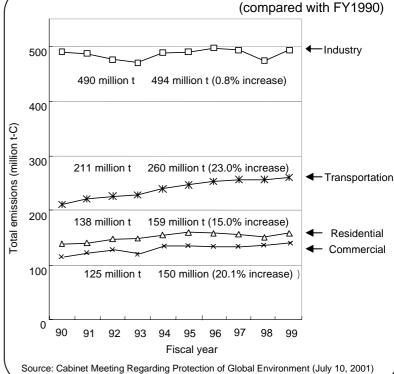
	FY1973	FY1990	FY2000
Generated electric			
energy (1 billion kWh)	379	738	940
Oil-fired power	73	29	11
Coal-fired power	5	10	18
LNG-fired power	2	22	26
Nuclear	3	27	34
Hydro	17	12	10
New energy	-	-	0.2

Source: Electric Power Supply Plan

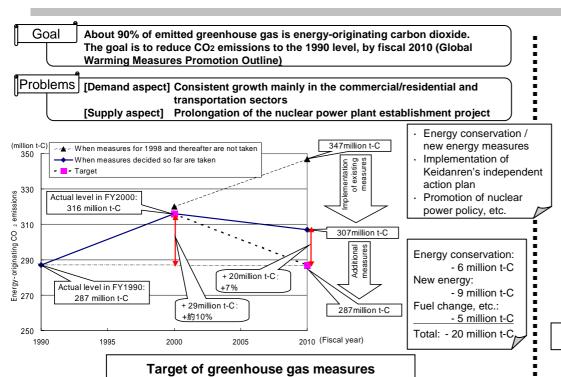
Energy-Originating CO₂ Emissions


Characteristics

- Energy-originating CO2 emissions consistently increased in accordance with the expansion of energy consumption. Even in the 1990s, when economic difficulties were faced, emissions increased by about 10%. While energy consumption in the industry sector, mainly in manufacturing, leveled off, emissions remarkably increased in the fields of passenger vehicle transportation and traveling, and in the commercial and residential fields, with lifestyles pursuing prosperity in the background.
- If expansion of energy consumption continues with no effective measures taken, energy-originating CO₂ emissions in fiscal 2010 are prospected to increase by over 20%, compared with the 1990 level.
- On the other hand, to achieve the 6% reduction target in the Kyoto Protocol, it is necessary to reduce energy-originating CO₂ to the 1990 level, and, energy consumption, centered on the commercial/residential and transportation sectors, must be further rationalized in the future.


–【Change in energy-originating CO₂ en	nissions in	Japan]-
---------------------------------------	-------------	---------

Fiscal year	90	91	92	93	94	95	96	97	98	99	2000	00/90
Total emissions												
(million tons - CO2)	1053	1073	1085	1065	1133	1139	1154	1151	1110	1148	1160	10.2%
Total emissions in terms of carbon	287.1	292.6	295.9	290.3	309.1	310.5	314.6	313.8	302.6	313.0	316.3	
(Rate compared with the previous												
year)		1.9%	1.2%	-1.9%	6.5%	0.5%	1.3%	-0.3%	-3.6%	3.4%	1.1%	
Per-capita emissions												
(million tons - CO2)	8.52	8.65	8.72	8.53	9.06	9.07	9.17	9.12	8.77	9.06	9.13	7.2%
Per-capita emissions in terms of			_									
carbon	2.32	2.36	2.38	2.33	2.47	2.47	2.50	2.49	2.39	2.47	2.49	


Source: Surveyed by the Agency of Natural Resources and Energy

Growth of emissions till FY1999 by sector

Reduction of Energy-Originating CO₂ Emissions and Energy Supply Outlook

(Point)

Reduction of energy-originating CO₂ to about 287 million t-C (FY1990 level)

2	2.5% Reduction of emissions of CO ₂ , methane, and dinitrogen monoxide									
	(Among them) ±0%: reduction of energy-originating CO ₂									
į		\Box	_	Measures						
İ		itional measures are mple maintenance of] ,	Energy conservation:	6 million t-C					
		neasures)	$ \langle =$	New energy:	9 million t-C					
!	Exceeds	by about 20 million t-C		Others (fuel change, etc.)	5 million t-C					
3	.9%	Change of land usag	e and	absorption by forest activi	ties					
+2.0	0%	Reduction of emissions of CFCs substitutes (HFC, PFC, SF6)								
	Remains (or Rest) 1.6% Joint measures and use of emission permit transactions, etc.									

Primary energy supply outlook

(Point)

Oil dependency rate: reduction to about 45% by FY2010

Fiscal year	1999 (composition ratio)	1999 (composition ratio)
Oil	52%	About 45%
Coal	17%	About 19%
Natural gas	13%	About 14%
Nuclear	13%	About 15%
Hydro	4%	About 3%
New energy	1% [About 3%

Outlook on electric energy generation (electric enterprises)

(Unit: 100 million kWh)

(Unit: 100 million kw							
Fiscal year		1999	2010				
Electric energy generated		9176	About 9970				
By power source	Actual number			Composition ratio (%)			
LNG	2405	26.2	About 2549	About 26			
Coal	1529	16.7	About 1599	About 16			
Oil, etc.	1129	12.3	About 533	About 5			
Nuclear	3165	34.5	4186	About 42			
Hydro	893	9.7	962	About 10			
Geothermal	34	0.4	37	About 0.4			
New energy	21	0.2	115	About 1			
CO ₂ emission basic unit (g • C/kWh)		89.9	About 73.6				

Definition of New Energy

What is new energy?

As to new energy, "use, etc., of new energy" is stipulated in the Special Measures Law on Promoting Use of New Energy, which was enforced in 1997, and new energy is positioned as something that Japan should aggressively promote introduction of, as policy support, as follows:

- among manufacturing, generation, use, etc., of oilalternative energy,
- (2) energy that is not being spread due to economic restriction,
- energy that especially contributes to the promotion of oil-alternative energy.

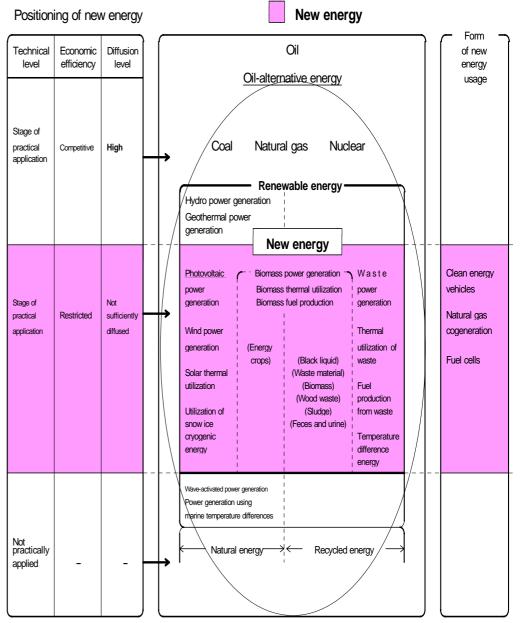
Specifically, new energy resources include the following:

• New energy on the supply side

(Power generation field)

- Photovoltaic power generation
- Wind power generation
- Waste power generation
- Biomass power generation

(Thermal field)


- Solar thermal utilization
- · Thermal utilization of waste
- · Biomass thermal utilization
- Utilization of snow ice cryogenic energy
- Temperature difference energy

(Power generation / heat)

- Fuel production from waste
- Biomass fuel production

New energy on the demand side

- Electric vehicles (including hybrid), natural gas vehicles, methanol vehicles
- Natural gas cogeneration
- Fuel cells

(Remarks) Black liquid means waste liquid generated from the pulp production process.

Significance of Introducing New Energy

New energy has various significances, such as contributing to the construction of a sustainable economic society, and the creation of new industries and employment, etc., and contributing to securing stable energy supply and addressing global environmental problems, as domestic energy resources with low restriction, and as oil-alternative energy that contributes to lowering oil dependency, and that places a low burden on environment, such as low emission of carbon dioxide.

Oil-alternative energy that contributes to securing stable energy supply

- Domestically produced energy facilitating stable energy supply, on which less resource constraint is imposed.
- Oil-alternative energy that reduces oil dependency

Clean energy with less environment impact

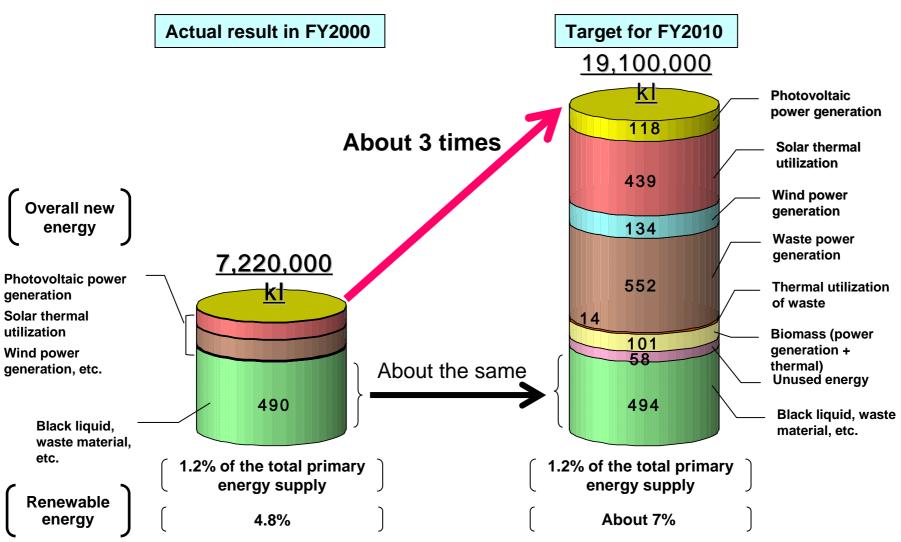
- Clean energy with less environment impact compared with fossil energy (new energy on the supply side)
- If energy efficiency is high, consumption of fossil energy can be reduced (new energy on the demand side)

Contribute to the creation of new industry and employment

- High potential for creating new markets and employment in the process of developing new technology and products
- Contribute to strengthening the competitiveness of Japanese companies

Benefits of a distributed energy system

- Can be used as a stand-alone energy system independent from commercial power distribution, in the event of an emergency, such as a disaster.
- Can be installed near where energy is needed, resulting in reduced energy loss during electric power transmission.


Potential for leveling the power consumption (reducing peak consumption)

• It is possible to level power consumption by operating the photovoltaic power generation system, etc., during the daytime in the summer.

Actual Result of Introducing New Energy, and Targets of Introduction for FY 2010

The new energy introduction target for fiscal 2010, based on the maximum efforts by governments and the people, was set at 19.1 million kl, in terms of crude oil.

This target was positioned in the Global Warming Measures Promotion Outline (decided by the Global Warming Measures Promotion Headquarters, on March 19, 2002).

Actual Result of Introducing New Energy, and New Introduction Targets (No. 1)

As a result of study based on the maximum efforts of governments and the people, the "new energy introduction target," on the supply side, was newly set at 19.1 million kl, in terms of crude oil (the rate in the total primary energy supply is about 3%).

New energy on the supply side

			FY2010	target	2010 /	Measures to achieve the new energy introduction target for FY2010	
		FY2000	Present measures maintenance case	Target case	2000		
	Photovoltaic power generation	81,000 kl (330,000 kW)	620,000 kl (2,540,000 kW)	1,180,000 kl (4,820,000 kW)		Promotion of cost reduction through mass production effect by technological development and introduction support, to achieve early market independence.	
Power	Wind power generation	59,000 kl (144,000 kW)	320,000 kl (780,000 kW)	1,340,000 kl (3,000,000 kW)	About 23 times	Study on stabilization and systematic measures, in addition to subsidy measures for advanced facilities and model projects, to promote further introduction.	
generation field	Waste power generation	81,000 kl (1,030,000 kW)	2,080,000 kl (1,750,000 kW)	5,520,000 kl (4,170,000 kW)	About 5 times	Promotion of technological development, and continuation of support toward model projects.	
	Biomass power generation	47,000 kl (69,000 kW)	130,000 kl (160,000 kW)			Clear positioning as new energy; careful judgment of economic efficiency and effectiveness, by conducting technological development and experimental testing; providing of subsidy, etc., toward model projects, as it is highly expected as a new energy.	
	Solar thermal utilization	890,000 kl	720,000 kl	4,390,000 kl	About 5 times	Promotion of cost reduction through support for introducing advanced or high-level systems	
	Thermal utilization of waste	45,000 kl	44,000 kl	140,000 kl	About 3 times	Continuation of support toward model projects that are conducted by local public bodies and private businesses.	
Thermal utilization field	Biomass thermal utilization	_	_	670,000 kl		Clear positioning as new energy; careful judgment of economic efficiency and effectiveness, by conducting technological development and experimental testing, and providing of subsidy, etc., toward model projects, as it is highly expected as a new energy.	
	Unused energy (including snow ice cryogenic energy)	45,000 kl	93,000 kl	580,000 kl	About 13 times	Promotion of technological development, and continuation of support toward enterprises that use unused energy. Implementation of research on snow ice cryogenic energy.	
	Black liquid, waste material, etc. (*)	4,900,000 kl	4,790,000 kl	4,940,000 kl	About the same	Further effective use of black liquid and waste material in the paper manufacturing and pulp industry.	
Total (rate in supply)	n total primary energy	7,220,000 kl (1.2%)	8,780,000 kl (1.4%)				
Total primar	y energy supply	About 600 million kl	About 620 million kl	About 600 million kl			

^{*} Organized as one of biomass, and partially includes those used for power generation.

Actual Result of Introducing New Energy, and New Introduction Targets (No. 2)

Renewable energies

		FY2010) target		
	FY2000	Present measures maintenance case	Target case	2010 / 2000	
Total of new energy supply	7,000,000 kl	9,000,000 kl	19,000,000 kl	About 2.7 times	
Hydro (conventional)	21,000,000 kl	20,000,000 kl	20,000,000 kl	About the same	
Geothermal	1,000,000 kl	1,000,000 kl	1,000,000 kl	About the same	
Total of renewable energies (rate in the total primary energy supply)	29,000,000 kl (4.9%)	30,000,000 kl (4.8%)			
Total primary energy supply	604	622	602		

Demand-side new energy sources

		FY201	0 target		Measures to achieve the new energy introduction target		
	FY2000	Present measures maintenance case	Target case	2010 / 2000	for 2010		
Clean energy vehicles *1	82,000 vehicles	890,000 vehicles	3,480,000 vehicles	About 42 times	Promotion of technological development, and cost reduction through mass production effect to be achieved by subsidy. Maintaining support for providing of fuel supply equipment.		
Natural gas cogeneration *2	1,700,000 kl	3,440,000 kl	4,640,000 kl	About 3 times	Promotion of technological development for cost reduction and higher efficiency, and providing of subsidy for leading-edge equipment and model projects		
Fuel cells	12,000 kl	40,000 kl	2,200,000 kl	About 183 times	For the phosphoric acid type, continuation of subsidy for model projects. For the proton exchange type, acceleration of technological development, implementation of experimental testing, and establishment of standards, etc., for safety.		

^{*1} Including demand-side new energy sources, such as electric vehicles, fuel cell vehicles, hybrid vehicles, natural gas vehicles, methanol vehicles, and diesel-alternative LP gas vehicles.

^{*2} Including those powered by fuel cells.

International Comparison of Results of New Energy Introduction

International comparison of photovoltaic and wind power generation

Installed capacity (unit: 10,000 kW)									
Photo (as of the er	ovoltaic nd of FY2	001)	Wind (as of the end of December 2001)						
Japan	45.22	46.0%	Germany	875.3	49.4%				
Germany	19.47	19.8%	US	424.5	24.0%				
US	16.78	17.1%	Spain	333.5	18.8%				
Australia	3.36	3.4%	Denmark	241.7	13.7%				
Netherlands	2.05	2.1%	India	150.7	8.5%				
Italy	2.00	2.0%	Italy	69.7	3.9%				
Switzerland	1.76	1.8%	UK	48.5	2.7%				
Mexico	1.50	1.5%	Netherlands	48.3	2.7%				
France	1.39	1.4%	China	39.9	2.3%				
Spain	0.91	0.9%	Japan	31.2	1.8%				
Canada	0.88	0.9%	Sweden	28.0	1.6%				
Austria	0.66	0.7%	Greece	27.2	1.5%				
Norway	0.62	0.6%	Canada	20.7	1.2%				
Korea	0.48	0.5%	Portugal	12.7	0.7%				
Sweden	0.30	0.3%	Ireland	12.5	0.7%				
Finland	0.28	0.3%	Egypt	12.5	0.7%				
Global total	98.22	100%		1,770.6	100%				

[Note] The value on wind power for Japan is based on the survey by NEDO (as of the end of March 2002).

[Source]

- NEDO research based on IEA statistics for the result of photovoltaic power generation as of the end of FY2001.
- "Wind Power Monthly April 2001" for the result of wind power generation as of the end of December 2001.

Rates of renewable energies in the total energy supply volume in various countries

Renewable energy sources: solar, wind, waste, hydraulic [excluding pumped storage type], geothermal, etc.)

		Primary e	nergy supply	Based on generated power volume		
		Record of 1999	Target for 2010	Record of 1999	Target for 2010	
Japan		4.9% (4.8%)	About 7%	10.3%	About 11%	
US		5.4%	6.9%	9.6%	9.2%	
Car	nada	16.8%	-	61.1%	-	
ΕU		5.5%	12.0%	14.8%	22.1%	
	UK	1.2%	-	3.8%	10.0%	
	France	7.0%	-	14.6%	21.0%	
	Germany	1.9%	-	6.2%	12.5%	
	Italy	5.1%	-	20.1%	25.0%	
	Denmark	9.3%	-	12.4%	29.0%	
	Sweden	29.7%	-	48.6%	60.0%	
	Austria	23.9%	-	71.5%	78.1%	
		Record of 1997	Prospect for 2010			
Entire world		5%	5%			
OECD nations		6%	6%	[Note] The va	alues for Japan	
Developing nations		4%	4%	The numl	e fiscal-year basis. ber in () shows	

[Source

- Report by the Advisory Committee on Energy and Natural Resources (July 2001) for the FY1999 record and the 2010 target for Japan.
- "Comprehensive Energy Statistics (FY2001 edition) by the Agency of Natural Resources and Energy, for the FY2000 record.
- "Energy Balance of OECD Countries 1998-1999" (2001 edition) for overseas records for 1999.
- The above report for the U.S.A. 2010 target on total primary energy supply.
- EU command (September 2001) for the EU 2010 target.
- IEA "World Energy Outlook 2000" for the 1979 record and the 2010 prospect for the entire world, etc.

the record of FY 2000.

Problems in New Energy Introduction and Efforts to Overcome the Problems (Output Stability)

Problems concerning output stability

Natural energy, such as photovoltaic power generation and wind power generation, is unstable in output because of dependency on sunshine, wind conditions, etc.

At present, therefore, these renewable energies are considered to be supplementary power sources, since power sources are expected to assure stable power, and, to ensure stable power supply, it is necessary to combine renewable energy with an adjustable power source or storage battery.

It is pointed out that general customers can also be affected through deterioration of electricity quality according to increased incorporation of new energy into electric systems, such as large-scale introduction of wind power generation, whose output is unstable.

Output comparison (power output / rated output) 20 10 Change in power output in August 1999 at Tappi Wind Park

(%)

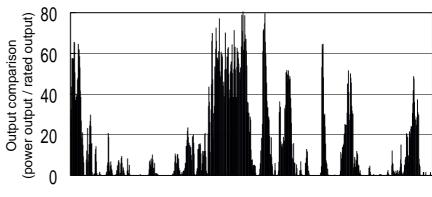
70

60

50

40

30


Change in power generated by photovoltaic power

Cloudy

generation by climate

Rainy

Sunny

8 10 12 13 15 17 19 21 23 24 26 28 30 (date)

Efforts to overcome the problems

To conduct experimental study, etc., on the effects of voltage variation and frequency variation on the electric systems, regarding photovoltaic power generation and wind power generation combined with storage batteries.

12

Problems in New Energy Introduction and Efforts to Overcome the Problems (Use Efficiency)

Use efficiency of representative new energies

	Power generation efficiency	Facility usage rate		
Photovoltaic power generation *1	10~15%	12%		
Wind power generation *2	20~40%	15~30%		
General waste power generation *3	10~30%	Average 61%		
Natural gas *4	· ·	For the public: 3,000 hours/yea For industry: 6,000 hours/yea		
Fuel cells (phosphoric acid type)	35%	6000 hours/year		

^{*1} The equipment use rate of photovoltaic power generation depends on the duration of sunshine, etc.

(Reference: General power efficiency and equipment use rates of existing power sources)

	Power generation efficiency	Equipment use rate	
Coal-fired power	40%	About 70%	
Oil-fired power	37%	About 20%	
LNG-fired power	41%	About 50%	
Nuclear	34.5%	About 80%	

Some new energies have low energy conversion efficiency, such as power generation efficiency, and low equipment use rates, and they have problems in use efficiency.

Technological development to improve energy conversion efficiency, such as generation efficiency, and the equipment use rate, is needed.

Improvement of the use rate will also lead to the following:

- (1) An increased number of sites that have potential to introduce new energy and increased introduction capacity
- (2) Improved economic efficiency.

^{*2} The equipment capacity of wind power generation depends on wind conditions, but it is generally considered to be about 20%.

^{*3} The equipment use rate of general waste power generation is the actual result of FY1999. Power generation efficiency was calculated considering caloric power of general waste as 2,100 kcal/kg.

^{*4} Power generation efficiency, and equipment use rates, of natural gas cogeneration and fuel cells, are representative values. Also, as to general energy efficiency, which is efficiency of power generation and utilization of waste heat, over 70% was achieved.

Problems in Introducing and Expanding New Energy (Economic Efficiency)

Problems concerning economic efficiency

Technological development and implementation of introduction-promoting measures have been reducing equipment cost and power generation cost of new energy, but the present cost levels are still higher than those of the existing power sources.

The present power generation cost of residential photovoltaic power generation is as high as a few times the household electric charge.

The wind power generation cost has decreased (about 9 to 14 yen /kWh) through reduction of equipment cost achieved by adoption of large-scale equipment in recent years, but the cost of small-and medium-scale equipment is still high.

Efforts to overcome the problems

Technological development to improve energy conversion efficiency, etc., and implementation of introduction support projects, such as equipment cost subsidy schemes, aimed at establishing market independence by creating initial demand (for example, aiming to lower the cost of residential photovoltaic power generation to the level of the household electric power charge).

Power generation cost of new energy

(unit: about yen/kWh)

	Photovoltaic power generation		Wind power generation		Waste power generation		Biomass	Small- and medium-
Туре	Residential	Non- residential	Large scale	Small and medium scale	Large scale	Small and medium scale	power generation	scale hydro power generation
Power generation cost	46~66	73	9~14	18~24	9~11	11~12	7~21	14

[Source] Report (July 2001) by the New Energy Subcommittee of the Advisory Committee on Energy and Natural Resources, and others

Power generation cost by power source

(unit: yen/kWh)

Туре	Nuclear power generation	LNG-fired power	Coal-fired power	Oil-fired power
Power generation cost	5.9	6.4	6.5	10.2

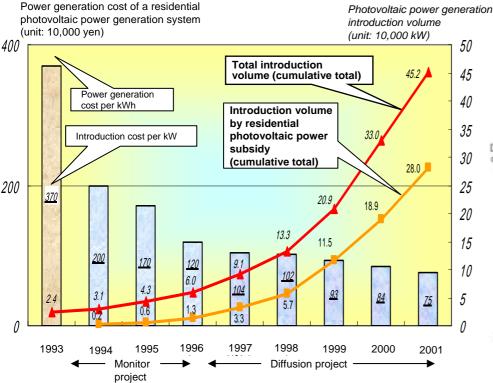
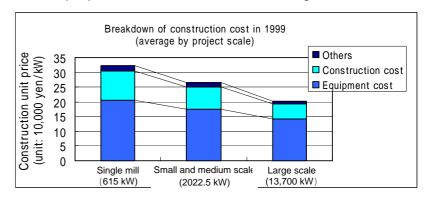

[Source] Data of the 70th Nuclear Power Subcommittee
(December 1999) of the Advisory Committee for Energy

Image of Efforts to Improve Economic Efficiency of New Energy

Change in economic efficiency of residential photovoltaic power generation

Reduced the average system price to about 0.77 million yen /kW, which is about one-fifth of that of eight years ago (FY1993), through technological development achieved over the past 20 years, surplus electricity schemes by electric companies (from 1992), installation subsidy by the Government (from 1994), etc.


Change in introduction volume, price, and power generation cost of a residential photovoltaic power generation system

Source: Trial calculation by the Ministry of Economy, Trade and Industry, based on discussion with the maker, etc.

Relation between equipment scale and economic efficiency of wind power generation

As to wind power generation, generally, the larger the scale, the lower the installation cost. In recent years, equipment size and project scale have been increasing.

Image of market independence and expansion through creating initial demand As to new energy equipment and facilities, creation (supporting) market of initial demand at the time of market introduction will freis conquer disincenties and achieve a scale that enables ndependente Creating initial demand independence, and will create great meet after diffusion Technological with existing products results. Investment in technological development will be also wasted. For new energy equipment and facilities, therefore, creating initial demand during market creation period is extremely No diffusion without support Senergistic effect of Total enerty mass product effect Shartage of social recognition and cost reduction Market sea New product Market creation Market independence and expansion period development maturing period

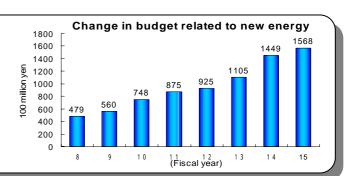
Policy Strengthening toward Expansion of New Energy Introduction

Legal aspect

January 2002 Added two new energy sources: "biomass" and "snow ice," to the new energy sources stipulated in the

Law on Promoting Use of New Energy (in fiscal 2002, the Government began supporting projects to

introduce these energies).


May 2002 Establishment of the "Special Measures Law on Promoting Use of New Energy, etc., by Electric

Enterprises" This Law made it obligatory, starting in April 2003, for electric enterprises to increase the

power generation rate by new energy sources, such as photovoltaic power, wind power, and biomass.)

Budget aspect

Fiscal 2003 budget plan related to new energy: 156.8 billion yen (an increase by 11.9 billion yen compared with the previous fiscal year; almost tripled in the past six years)

Collaboration among ministries

- The entire Government positioned new energy introduction targets in the Global Warming Measures Promotion Outline decided in March 2002.
- Especially in the biomass field, systematic collaboration among ministries is important.

Ministry of Economy, Trade and Industry

New energy measures

Ministry of Agriculture, Forestry and Fisheries

Biomass measures related to agriculture, forestry, and fisheries

Ministry of Land, Infrastructure and Transportation

Measures related to construction waste material and sewage sludge

Ministry of the Environment

Waste measures

Support for technological development and experimental testing, and appropriate collaboration in support for individual projects

Political or Policy Support for Development and Introduction of New Energy

Change in budget

Fiscal year	1996	1997	1998	1999	2000	2001	2002	2003
Monetary amount (hundred million yen)	479	560	748	875	625	1,105	1,449	1,568
Balance (hundred million yen)	46	81	188	127	50	180	344	119
Growth rate	10.6	16.9	33.6	17.0	5.7	19.5	31.1	8.2

Budget system

Phase		Content	Project	FY2003 FY2002 for
Technological development		Implementation of technological development regarding important development issues, to promote cost reduction and performance improvement of new energy technology	 Photovoltaic power generation-related (7.4 billion yen) Wind power generation-related (2.3 billion yen) Fuel cells-related (23.4 billion yen) Biomass-related (2.8 billion) 	About 43.4 billion yen (about 38.8 billion yen)
Experimenta	ıl testing	Implementation of experimental testing for experimenting and confirming the effectiveness in actual use, through such as extraction, elucidation, and management of problems that would hinder practical application of developed technology and its market introduction, based on the results of technological development.	Pield test on new technology for photovoltaic power generation, etc. (3.5 billion yen) Experimental study on integrated linkage-type photovoltaic power generation systems (2.4 billion yen) Experimental testing on unused energy, such as biomass (2.8 billion yen) Experimental study on proton exchange-type fuel cells (3.9 billion yen)	About 18.8 billion yen (about 10 billion yen)
	Establish- ment of market independ- ence	Creating initial demand for early establishment of market independence through mass production, as to new energy that is in the stage of practical application.	 Support to introduce residential photovoltaic power generation systems (10.5 billion yen) Support to introduce advanced solar thermal utilization systems for residential use (2.8 billion yen) Support to introduce clean energy vehicles (15.4 billion yen) 	
Promoting introduction	Advanced projects	Support to introduce advanced new energy by enterprises, municipalities, etc., and promote diffusion of similar projects	New energy enterprise support measures (38.8 billion yen) Regional new energy introduction promotion measures (12.7 billion yen) Projects, such as establishment of regional new energy visions (1.3 billion yen)	About 94.6 billion yen (about 96.1 billion yen)
	Grass- roots level	Support for new energy introduction promotion projects by NGOs, etc., to accelerate grassroots-level new energy introduction.	•New energy non-profit activity promotion project (1.1 billion yen)	

1

Support System to Expand New Energy Use

Support<

Support <

Support <

General introduction flow

Establishment of regional new energy plans

- Grasping and analysis of regional characteristics
- Establishment of individual project plans, etc.

Study on project introduction and project implementation

- Introduction planning
- Study on financial source
- Project method
- Experimental testing, etc.

Judgment on project implementation

Coordination with related agencies, establishment of implementation plan, designing,

Installation construction

Start of service of new energy

Main support systems

Projects, such as establishment of regional new energy

visions (for local public bodies)

Provision of subsidy for part of project costs toward local public bodies, to establish plans for discovering various energies latent in local regions, and giving fresh encouragement to improve regional vitality toward the 21st century. (Subsidy: set amount)

FY2002 budget: 1,230 million yen FY2003 budget: 1,320 million yen

Experimental testing on unused energies, such as biomass

(For enterprises and local public bodies)

Provision of subsidy for part of project costs toward enterprises, etc., that conduct experimental testing projects and project feasibility research, to effectively use unused resources that are latent in regions, such as biomass, as energy.

FY2002 budget: 1,100 million yen FY2003 budget: 2,820 million yen

Experimental testing project, subsidy: less than half (up to 50 million yen / case and year)

Project feasibility research, subsidy: set amount (up to 10 million yen / case and year)

Regional new energy introduction promotion project

(for local public bodies)

Provision of subsidy for part of project costs toward local public bodies, etc., that conduct model projects or advanced efforts, such as large-scale and intensive introduction of new energy. (subsidy: less than half)

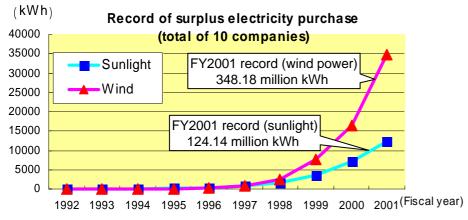
FY2002 budget: 12.7 billion yen FY2003 budget: 12.71 billion yen

New energy enterprise support project (for enterprises)

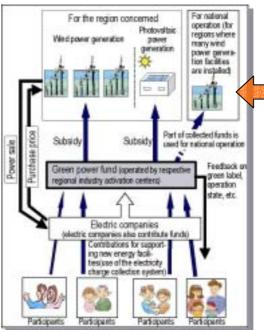
Provision of subsidy for part of project costs toward advanced enterprises that introduce new energy according to plans approved based on the New Energy Law. (subsidy: less than 1/3)

FY2002 budget: 23.62 billion yen FY2003 budget: 38.82 billion yen

Independent Efforts by Electric Companies to Introduce New Energy


Surplus electricity purchase scheme

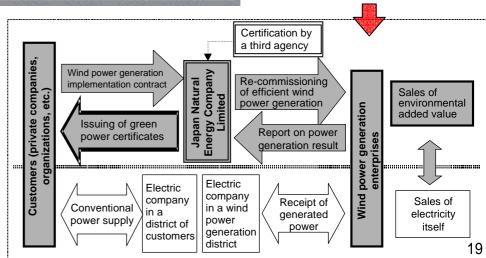
Surplus electricity purchase scheme (from April 1992)


- Power generated from new energies, such as sunlight and wind, is purchased based on a surplus electricity purchase scheme independently set up by each electric company.
- As to photovoltaic power and wind power, the purchase price is the same as the market electricity charge.
- For an offer for electricity sales, the entire volume is purchased, in principle.
- However, as to large-scale wind power generation, a bidding system is partially introduced (from autumn 2000).

[Electricity purchase schemes for enterprises (long-term contract scheme)]

- Because wind power generation has been operating as actual business considerably, each electric company purchases it for a long term and stably, and wind power purchase schemes for businesses are separately set.
- Purchase unit price is 11.2 to 11.7 yen / kWh.
- Contract period is 15 years or 17 years.

Green power system



[Green power system]

Ten electric companies throughout Japan collect contributions, for 500 yen per share from consumers in the electricity supply district, and, using the contributions and the companies' own contributions, as funds, the operator of the power fund system in each region issues subsidies for photovoltaic power generation and large-scale wind power generation for public benefit in the district concerned.

[Green power certificate system]

Entrusted companies established by electric companies collect capital contributions for wind power generation, from private companies, and, using them as funds, they commission power generation to wind power generation enterprises. Green power certificates are issued, to prove support based on the contributions concerned.

Outline on the Special Measures Law on Use of New Energy, etc., by Electric Enterprises

Law obligating <u>electric enterprises</u> to <u>use electricity</u> from new energy, etc. (enacted in 2002)

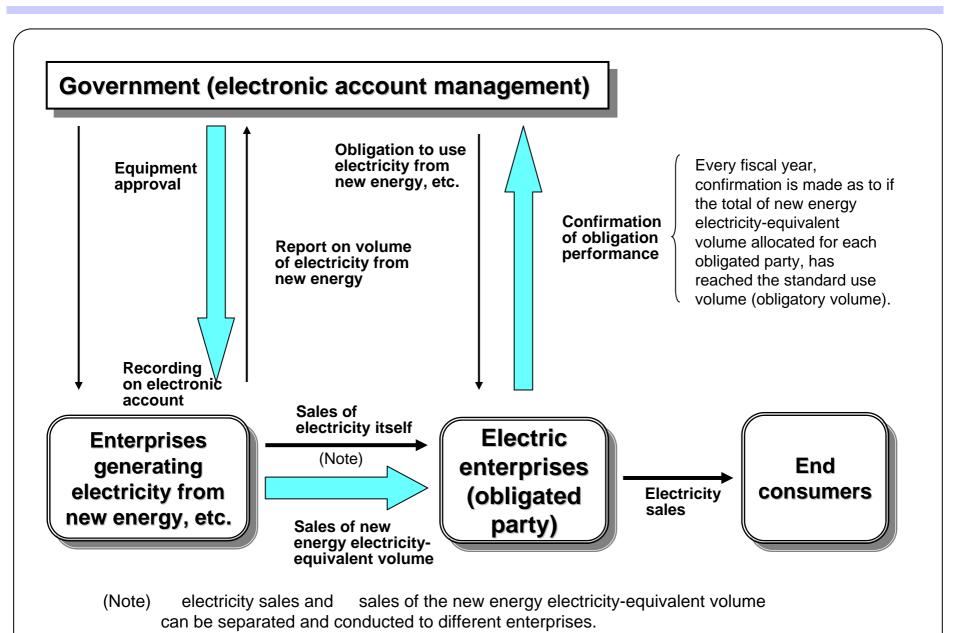
Setting of a target for use of electricity from new energy, etc., by all electric enterprises

- Electricity from new energy, etc., means electricity obtained by converting wind power, photovoltaic power, geothermal power, small- and mediumscale hydro power, biomass and others.
- Target for use is 12.2 billion kWh for FY2010. (There is no breakdown target by new energy source.)

For the standard use volume of electricity from new energy, etc., to be achieved by each electric enterprise, the entire use target is allocated according to the ratio of electric energy sold by each.

 An electric enterprise can freely choose which new energy sources to use to achieve the standard use volume.

A legal pledge is required regarding achieving the standard use volume.

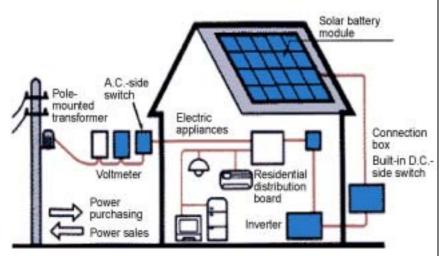

Being a new energy power generation facility is authorized by the Government.

Actual obligation is planned to start in April 2003.

Electric enterprises (retail enterprises) applicable to obligation: a total of 25 companies **[General electric enterprises]** a total of 10 companies Hokkaido Electric Power Co., Ltd. Tohoku Electric Power Co., Ltd. Tokyo Electric Power Co., Ltd. Chubu Electric Company, Incorporated Hokuriku Electric Power Co. Kansai Electric Power Co., Inc. Chugoku Electric Power Co., Inc. Shikoku Electric Power Co., Inc. Kyushu Electric Power Co., Inc. Okinawa Electric Power Co., Inc. [Specific-scale electric enterprises, **specific electric enterprises**] a total of 15 companies Diamond Power F-L FX Suwa Energy Service Amagasaki Utility Service And others <Power generation using wind, photovoltaic, biomass, hydro, geothermal power, etc.> Private Electric Power companies. enterprises generation Electricity Electricity general (retail enterprises consumers, enterprises etc. (Consumption) (Power generation) (Sales) Electricity flow 20

(As of January 2003)

Scheme of the Special Measures Law on Use of New Energy, etc., by Electric Enterprises


2

References

(New Energy-Related)

What is Photovoltaic Power Generation?

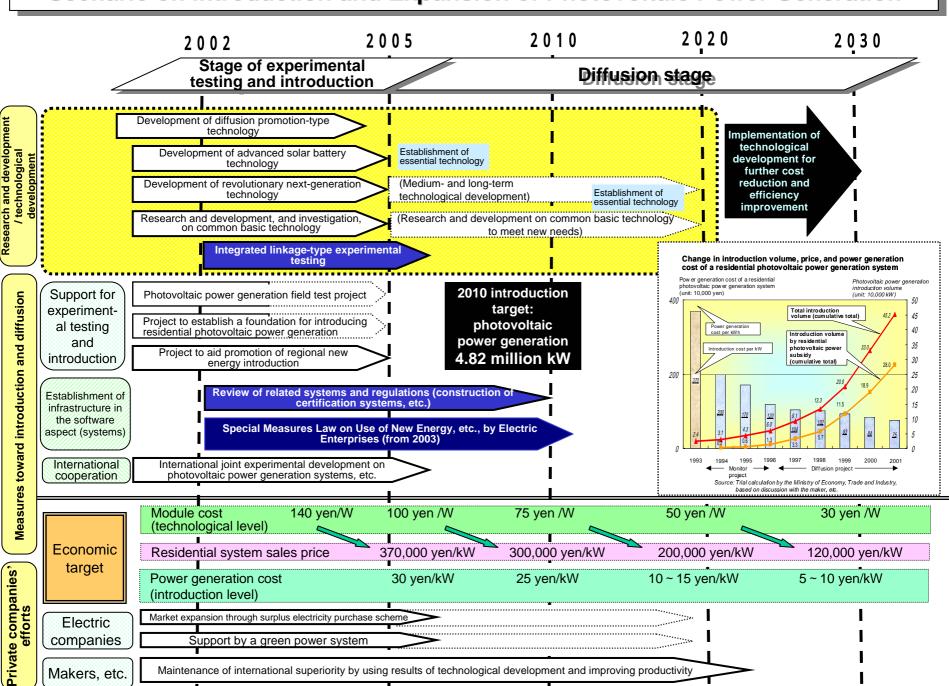
The method of generating power by using the phenomenon of electricity being generated when light is directed onto silicone semiconductor, etc., and directly converting solar energy into electricity by a solar battery (microchip).

- * Inverter: Converts generated D.C. power to A.C. power
- * Metering device: Calculates power purchased from and power sold to an electric company.

For 3.5 kW equipment

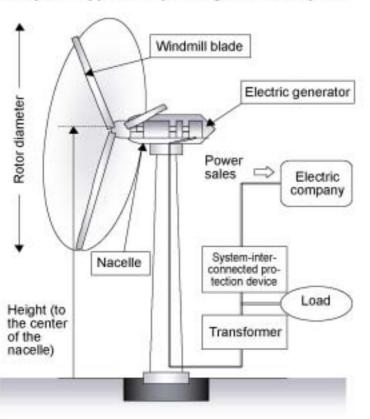
- Necessary
- Electricity generated: about 3,680 kWh/year
 Trial calculation formula:
 3,680 kWh/year = 3.5kW x (24h x 365D) x use rate 12%
- Electricity consumed by a general household: about 3,600 kWh per year
- Durability: 10 to over 20 years
 - * Legal durability: 15 years
- Cost: About 3 million yen including construction fee (FY2000)

(Remarks)


- The size of electricity equipment (kW) corresponds to the size of the diameter of a water pipe.
- The electricity generated (kWh) corresponds to the volume of water from a water pipe.

Recent Photovoltaic Power Generation Introduction Volume (International Comparison)

Source: Trends in Photovoltaic Applications / IEA (as of 2001) (provisional value)


Scenario on Introduction and Expansion of Photovoltaic Power Generation

What is Wind Power Generation?

The method of generating power by rotating windmills, and conveying the rotational movement to power generators.

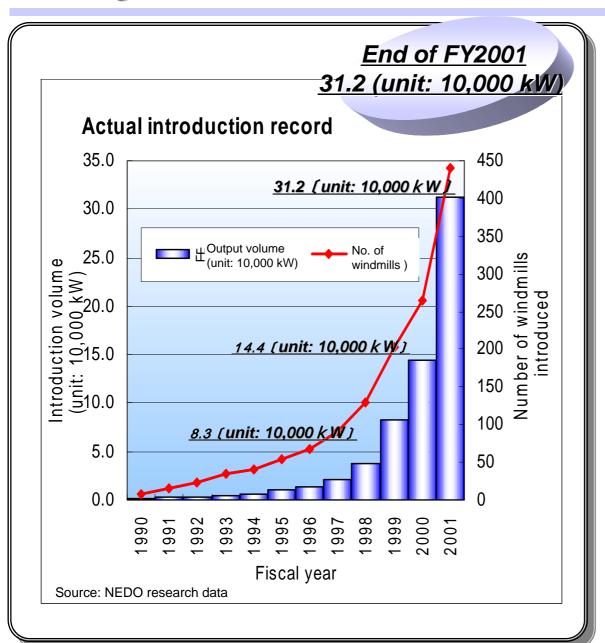
Propeller-type wind power generation system

In the case of 1,000 kW equipment

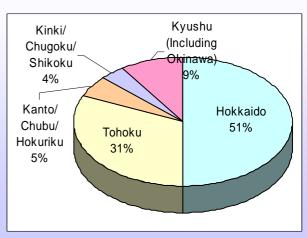
(Rotor diameter: D=56 m, height (to the center of nacelle): 60 m)

- Necessary site area: about 50,000 m²
- Electricity generated:

about 1.75 million kWh/year

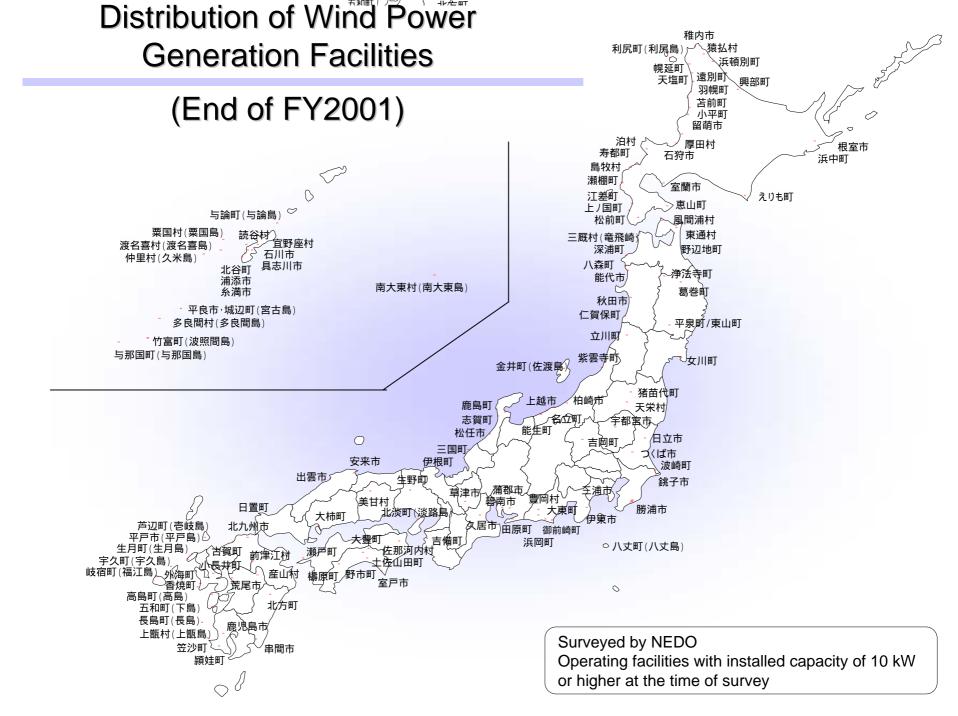

Trial calculation formula:

175 kWh/year = 1,000 kW x (24h x 365D) x use rate 20%


(For about 468 general households)

- Durability: 17 years (legal durability)
- Cost: About 200 to 300 million yen, including construction fee (FY2000)

Change in Wind Power Generation Introduction Volume in Japan



Introduction state by region (end of FY2001)

Prefectures with high introduction volumes (end of FY2001)

Hokkaido	157,000 kW
Akita Pref.	46,000 kW
Aomori Pref.	39,000 kW
Okinawa Pref.	12,000 kW
Nagasaki Pref.	10,000 kW
Yamagata Pref.	5,000 kW
Kagoshima Pref.	5,000 kW
Kyoto Pref.	5,000 kW
Niigata Pref.	4,000 kW
Fukushima Pref.	4,000 kW

