Energy Conservation Activities under the ISO14001-compliant Environmental Management System

式会社 ヤクルト本社 京都

YAKULT HONSHA CO., LTD. Kyoto Factory 38, Tohachi, Makishima-cho, Uji City

Factory Overview

Organization for Environmental Protection

Energy Conservation Activities

Environmental Education

Final Goal

Factory Overview

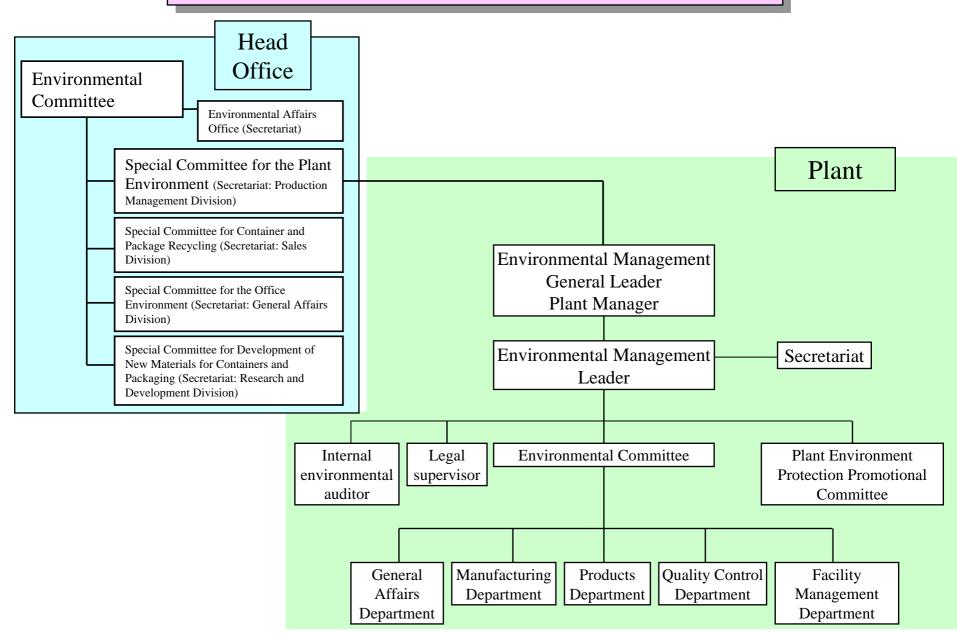
- Jul 1963
 - Newly built the factory on the present site and started production of Yakult
- May 1978 Started production of Mil-Mil
- Mar 1990 Installation of Septic Tank of the Yakult Filter Element System using Yakult containers
- Jan 1998 Acquisition of HACCP Certification
- Jul 1999 New Energy Building Completed

(Electric room/Refrigerators/Compressors/Boiler equipment were replaced)

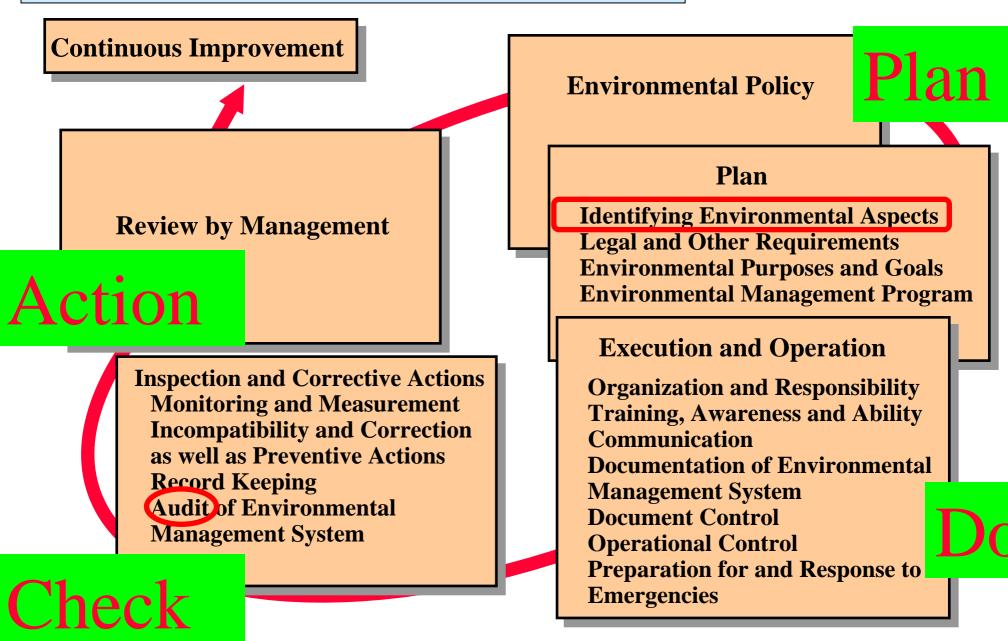
Shifted the boiler fuel from LPG to City Gas

- Oct 1999 <u>Acquisition of ISO14001 Environmental Management System</u>
- Feb 2001Acquisition of an in-house certification in conformity with
ISO9002 Quality Assurance System
- Feb 2001 Replaced the Production Equipment of Mil-Mil

No. of employees



(Male 76 / Female 5 / Part-timer 29 Average age 42.1) [As of April 1, 2003] 19,180 m² (Approximately 5,812 *tsubo*) Yakult 65 concentrate Yakult 400 concentrate (77,400 l/day 2,772 thousand bottles/day) Mil-Mil, Mil-Mil E, Bifiel (Filling line: 8 lines, 570 thousand bottles /day) **Electricity (contract demand 1200kwh)** City Gas (Approximately 61,000 m³/month) 16,900 kg/month Recycling Rate: 95.8 % (FY 2002) Sludge for Wastewater Treatment (58%); Packing **Materials for Raw and Indirect materials (33%)**


Management System

Name of System	НАССР	ISO9002	ISO14001		
	Abbreviation of Hazard Analysis and Critical Control Point. It is also called the Sogo Eisei Kanri Seizou Katei or 'Hasappu' in the Ministry of Health, Labor and Welfare.	Quality Management System	Environmental Management System		
For Whom	Customers	Customers	Community/Citizens/Ecology		
Purpose	Securing the Product Safety and	Enhancement and Improvement	Environmentally Friendly		
	Stabilizing the Quality through	of Product-related Quality	Corporate Behavior and Product		
	Hazard Prevention	Control	Development		
			Continuous Reduction in		
			Environmental Load		
Technique	Analyze the hazard concerning	There are 138 requirements for	Evaluate influences on the		
		the standard	details of business activities and		
	process that can manage the		identify remarkable		
	hazard as the critical control		environmental influences out of		
	point, which is targeted for such		them. Carry out improvement		
	management as standard setting		activities by setting their		
	and monitoring. There are 12		purposes and goal focusing on		
	procedures.		them.		
			Carry out continuous improvement by the		
			PDCA Cycle for all time to		
			come.		
			There are 52 requirements for		
			the standard.		
Sections	Organization and Responsibility	Educational System, Document C			
	Organization and Responsibility, Educational System, Document Control, Record Keeping, Internal Audit, Resources, Communication.				
	HACCP is part of the "Process Control" in the ISO9002.				

Organization for Environmental Protection

Model for Environmental Management System

Merits in Constructing Environmental Management System based on the ISO14001

- 1. Employees' awareness will be increased and the company image will be enhanced (Environmentally Friendly Enterprise) by implementing production activities in consideration of the environment based on the ISO standard
- 2. Favorable communication with the community and the industry
- 3. Costs will be improved (reduction of wastes, energy conservation, resources conservation)
- 4. Survival of the company will be secured by preventing accidents from occurring (Risk Management/Crisis Management)
- 5. Recurrence will be prevented and improvement will be continued through the pursuit of the true causes by the internal audit

Remarkable Environmental Aspects

Drain **Boiler Exhaust Gas Use of City Gas Use of Electrical Power Use of Organic Solvent Use of CFCs** Non-industrial Wastes **Industrial Waste Special Control Industrial Waste** Noise

(Drain in the production process)

(2t Boiler × 7 units)

(Boiler Fuel)

(Individual facility)

(Inkjet)

(Refrigerator/Air conditioner)

(Wastepaper/Solid Waste Refuse)

(Sludge/Packing Material)

(PCB Transformer)

(Chiller/Blower)

Corporate Philosophy

We will contribute to creation of healthy and happy life of people around the world through the pursuit of the life science.

Environmental Philosophy

Yakult Honsha and all the business unit of the Yakult Group will behave in consideration of the environmental protection in all aspects of corporate activities with the understanding that conservation of the global environment is one of the most important issues for the 'management to coexist with the society'.

Environmental Policy of Kyoto Plant

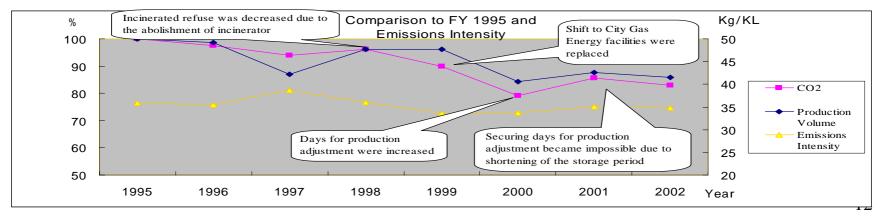
Code of Conduct

The Kyoto Factory will implement the environmental management in accordance with the following guidelines based on the understanding that it is a plant to manufacture lactic acid bacteria dairy drinks and cultured milk.

- 1. It will establish the 'Plant Environmental Committee' with members composed of managerial workers and grapple with environmental problems associated with business activities actively and continuously with all employees in a body under the policy.
- 2. Needless to say observing environment related laws and regulations and industry standards, it will strive to continuously improve the environmental management levels and plan prevention of the environmental pollution by setting up voluntary standards.
- 3. In manufacturing products, it will give consideration to reducing and recycling wastes, optimizing the treatment and the disposal of them and use of recyclable resources.
- 4. It will promote reduction of electric power and gas fuels in order to prevent global warming.
- 5. It will actively support and cooperate in the environmental protection activities in the society and the community as a good corporate citizen with a global view.
- 6. In order to achieve this environmental policy, it will set up environmental purposes and goals in individual section and promote the environmental management in all over the sections with all employees. Also it will regularly review the environmental purposes and goals and revise them as needed.
- 7. It will implement and maintain the environmental policy through the Environmental Management System. It will make it known to all employees by electronic documents or bulletin boards and will disclose it to outsiders upon request.

Revised on April 25, 2000 Kyoto Plant, Yakult Honsha Co., Ltd. Tetsuo Ishikawa, Plant Manager


Setting up Environmental Purposes and Goals


	Purposes	Mid-term goals		
	Improve the reduction of industrial waste and non-industrial wastes and the recycling rate.	Reduce 50% compared to FY 1995 by 2005. (Cut by half) Aim at achieving Zero Emissions which is within the law regulation by FY 2004.		
2	Reduce the CO2 emission	Reduce 17% compared to FY 1995 by 2005.		
3	Improve the pollution control level	Maintain the water quality under the voluntary standard value. Reduce the amount of water usage.		
4		Reduce the consumption of paper. Promote the Green Purchasing.		
5	Support and cooperate in the environmental protection activities in the local community.	Keep continuous activities.		

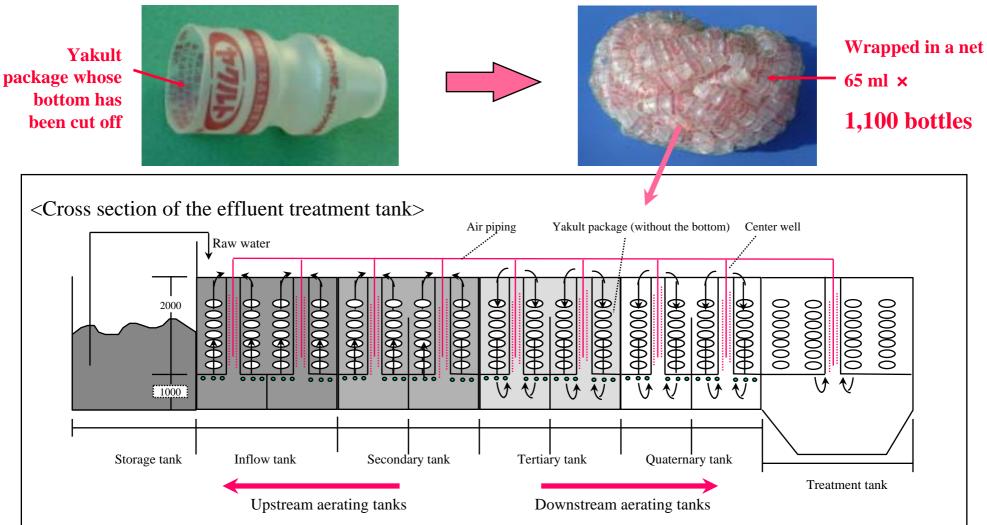
Energy Conservation Activities

CO2 Emission and Production Volume

		Unit	1995	1996	1997	1998	1999	2000	2001	2002
	CO2	Kg	1,121,945	1,094,306	1,054,359	1,079,886	1,007,827	888,881	960,318	931,241
	Production Volume	KL	31,245	30,796	27,206	30,030	30,051	26,336	27,424	26,805
	Emissions Intensity	kg/KL	35.9	35.5	38.8	36.0	33.5	33.8	35.0	34.7
Comparison to FY 1995	CO2	%	100	97.5	94.0	96.3	89.8	79.2	85.6	83.0
	Production Volume	%	100	98.6	87.1	96.1	96.2	84.3	87.8	85.8

Cases of Energy Conservation

Item	Details	Merit	Demerit	Calculable Merit
Restricting the number	Control the number of boilers to	Reduce the fuel by minutely controlling	None	'Reduction of fuel cost:
of boilers	operate in accordance with the	operation in accordance with the demand of		
	necessary steam pressure by replacing	users. Production can be continued even if		
	the 10t large boiler with 7 units of	one boiler breaks down.		
	small boilers			
Restricting the number	Restrict the number of necessary	Reduce the electric energy by supplying it in	None	• Reduction of extra operation time during the time zones of
of compressors	compressors in operation by operation	accordance with the demand of users.		production start, process shutdown, and production start:
	signals transmitted from facilities that	Especially extra operation of compressors		
	use compression air in large quantity	during the time zones of production start and		Preparation time before operating the facility to use + process
	(such as 8 units of filling machines and	end can be controlled. This method has a		down time (setup time or trouble down time) \times number
	a package opener of skim milk	larger effect on an old model machine with		
	powder).	weaker unload function. Production can be		
		continued even if one boiler breaks down.		
Intermittent operation of	Change the operation of such motors	This method can be easily implemented just by	The product temperature in	'Reduced electric energy:
machines in 24-hour	in 24-hour service as the product	addition of a timer. It certainly works by the	every season or the	Motor electrical power \times down time
service	storage tank and the effluent	stop time.	condition of effluent	
	treatment blower to such intermittent		treatment needs to be	
	operation as every other hour.		investigated or changed.	
DO control of the	Control the amount of air supply for	Facilitation of operation control by stable	None	'Reduction of electric energy for extra operation during the
blower for drainage	effluent treatment by the DO value in	supply of air. Reduction of electric energy.		time zones and seasons when drainage load is small:
	the tank.			Comparison of electric energy
				Before control 371 kwh/day
				After control 315 kwh/day
				Reduced amount 56 kwh/day
				(Note: The amount will vary due to drainage load or
				seasons)
Effluent treatment using	Use Yakult containers as filter	Reduction of electric energy.	Increase of the tank	'Reduction of electric energy by decreasing the air amount:
the Yakult container	elements for the contact aeration	Reduction of sludge waste.	installation area.	Example of comparing electric energy unit prices
filter element	system in effluent treatment.	Easy maintenance.		Activated sludge system 49.26 yen/m3
				Yakult filter element system 33.40 yen/m3
				· Sludge disposal cost:
				Sludge incidence rate
				Activated sludge system 25%
				Yakult filter element system 3% 13
				······································


Cases of Efficiencies

Item	Details	Merit	Demerit	Calculable merit
Shift to City Gas	Replace the boiler fuel from LPG to	Reduction of CO2 emission	Increase in fuel unit prices	· CO2 emission:
	City Gas	Reduction of such costs as labor costs		CO2 emission coefficient 1.8 (LPG) 0.64 (City Gas)
		required for daily and legal inspection and		Labor costs:
		test of LPG tanks		For one maintenance personnel
Ice storage	Make ice using only low-cost	Effective use of nighttime power	Increase of area for ice	Contract demand:
	nighttime power and use the ice during	Reduction of electric power expense	storage tanks	1380 kw 1200 kw
	the daytime production hours as chilled			'Eco Ice Power:
	water.			'Electric power expense:
Equalization of time	Reduce the contract amount of City	The contract amount by the maximum	The time chart of production	'Reduction of the contract amount:
zones to use steam	Gas fuel by dividing the steam amount	amount of usage per hour can be lowered.	process needs to be	600 m3/h 510 m3/h
	of usage per hour into two production		changed.	$(600-510) \times 1270 \text{ yen} \times 12 \text{ months} =$
	processes.			Approximately 1.37 million yen

Effluent Treatment Using Yakult Package Filter Elements

Characteristics

- (1) Fill all aerating tanks with Yakult packages whose bottoms have been cut off (5,600 bottles/m³) $250 \text{ m}^3 \times 5,600 \text{ bottles} = 1,400 \text{ thousand bottles}$
- (2) In the aerating tanks, water circulates upward by aerators (all aerators) and downward by airlift.

Comparison of Costs and Maintenance

(1) Running cost

	Activated Sludge System Results in '95 and '96	Yakult Filter Element System Results in '97 and '98
Quantity of Treated Effluent		
(m3/year)	43,615	78,845
Quantity of Treated Sludge		
(m3/year)	50	0
Electric Power Expense		
(yen/year)	2,148,611	2,633,144
Quantity of Treated Sludge		
(yen/year)	625,500	0
Chemical Expense (yen/year)	55,652	27,720
Electric Power Unit Price		
(yen/m3)	49.26	33.4
Treatment Unit Price		
(yen/m3)	64.88	33.75
BOD Unit Price		
(yen/kgBOD)	112.17	51.9

(2) Maintenance against Rapid Load Changes

Activated Sludge System	Yakult Filter Element System
	It recovers from a rapid load change
It takes three months to recover	the day after its occurrence by
from occurrence of bulking	decreasing the inflow

Ice Storage

Ice Storage Facilities Before Replacement

Refrigerators 3 units (75 kw×3) Ice Storage Tanks: 3 units (All direct expansion system)

Provided chilled water

Problems of the Old Facilities

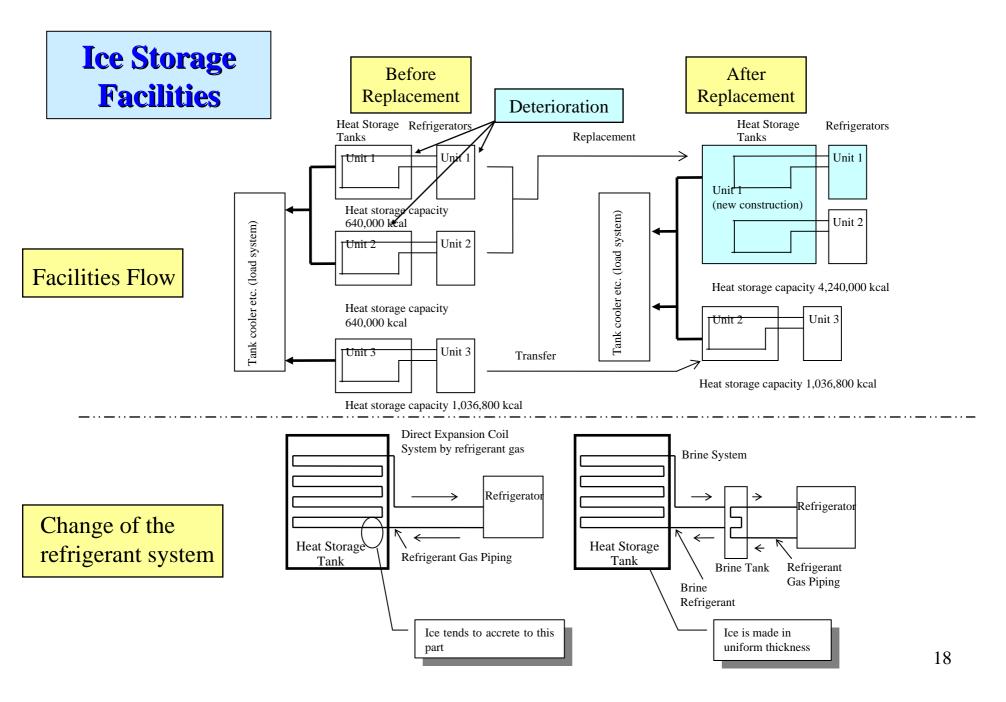
(1) The heat storage capacity of the heat storage tanks was too small to meet the heat load required in the daytime use. Therefore the refrigerators had to be operated during the production peak hours in the daytime, resulting in a large contract demand.(2) There was a variance in the condition of ice accretion in the heat storage tanks that made it impossible to make ice in uniform thickness.

Details of Improvements

The following two improvements were made in time with the replacement of one refrigerator and heat storage tanks.

(1) Upsizing heat storage tanks

Heat storage tanks were replaced with ones that had capacity large enough to store the entire heat load required in the daytime during the nighttime.


2,316,800 kcal 5,276,800 kcal

This allowed the shutdown of refrigerator operation and helped reduce the contract demand.

(2) Change of the refrigerant system of refrigerators

The refrigerant system for two refrigerators out of three were changed from the direct expansion coil system to the brine system.

This reduced extra operation time by improving the condition of ice accretion in heat storage tanks.

Effects

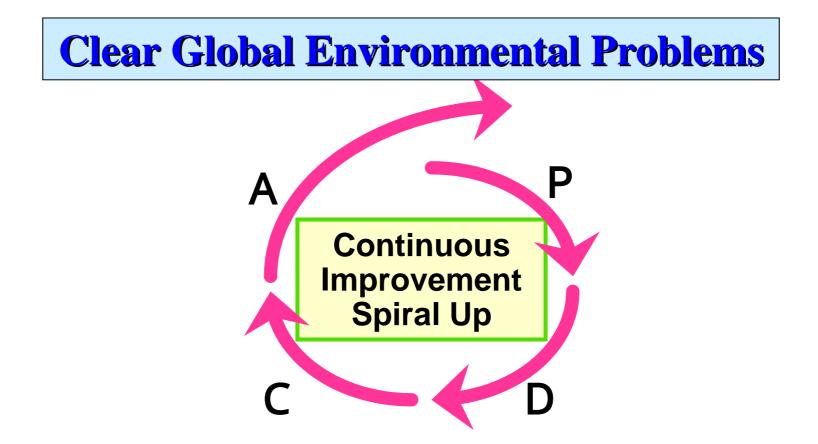
	Electric energy for refrigeration facilities	Electric power expense for refrigeration facilities	Contract demand	Nighttime discount rate
1998	975,448 kwh	¥14,281,000	1,380 kw	¥2,013,000
1999	779,898 kwh	¥11,341,000	1,200 kw	¥2,529,000
Year-on-year decrease	195,550 kwh	¥2,940,000	¥3,268,000	¥516,000
			Total decrease	¥6,724,000

Environmental Education

From the top to rank-and-file employees

Enhancement of environmental awareness and improvement of environmental morality are required.

Environmental management, capital investment and daily energy conservation and separation and reduction of wastes


Choral speaking of the environmental policy, continuance of awareness education

To the next generation

• Have employees talk with their families children) about the environmentally friendly behavior and its merit

Participation in Clean Up Movement, Environmental Household Account Book

