October 29, 2003

10. Technologies for Energy Efficiency & Conservation

省エネルギー技術

Mr. Kazuki TANABE 田鍋 一樹

General Manager International Training & Communication Department The Energy Conservation Center, Japan

(財)省エネルギーセンター国際研修部部長

Energy Efficiency and Conservation

for Central and Eastern European Countries, 2003

Technologies

for Energy Efficiency and Conservation

- Methodology Including Energy Management -

October 29, 2003 at JICA / TIC, Japan

Kazuki Tanabe

General Manager The Energy Conservation Center, Japan http://www.eccj.or.jp

Contents

- 1. Energy Management
- 2. Measurement
- 3. Energy Audit
- 4. Management System
- 5. Methodology (Way of Thinking)
- 6. Energy Saving Technology
- 7. Conclusion

1. Energy Management

- Energy Management
- Essential Aspects
- Measure
- Effect
- Education

Energy Management

Energy Saving (or Conservation) Energy Efficiency (by Machine, System) Machine Efficiency Energy Recovery Control System

• Energy Conservation (by Human)

- Phase 1 : Improved Operation

 (A) Without Investment
- Phase 2 : Equipment Improvement (B) Small Investment
- Phase 3 : Dramatic Improvement (Strategy, Innovation) (C) Large Investment

Measure of Management

Category of Measure

Technology and Economic Conditions

Measure and Implementation

	Small-group Circle	Manager Group	Director Project team				
A	Ô	0					
B	0	Ø	0				
C		0	Ô				
\bigcirc	×						
(A) Without Investment							
$\overset{\smile}{\mathbb{B}}$ Small Investment							
C Large Investment							
D Not Consider							

Effect of Energy Conservation

" Energy Management is most profitable "

2. Measurement

- Measurement and Management
- Example of Measure for Industrial Furnace
- Example of Measurement Instruments

Measure for in Industrial Furnace

Measuring Points of Dissolution Furnace

(Number : Measuring point)

< Example 2 >

3. Energy Audit

- <Survey Result>
- Number of Audit
- Energy Saving Potential
- Items of Energy Management
- Practical Way of Energy Management (Example in the field of Thermal Energy)

Energy Saving Potential in Industry (Survey 1999 by ECCJ)

Items of Proposals for Energy Management (for Furnaces, boilers)

Waste Heat Recovery

Practical Management Introduction

The standard of rationalization of energy use
 Air Ratio
 Outer Wall Temperature of Furnace Wall
 Recovery Rate of Waste Heat

2. Example / Industrial Furnace (Combustion)

The Air Ratio of Combustion

Air ratio (m) = Actual Air / Theoretical Air (Volume) Air ratio=21/(21-02) (%) • Excess Air : The increase in exhaust gas heat loss Increase in NOx \rightarrow Environmental aggravation Increase in oxidation loss \rightarrow Yield aggravation •Insufficient Air : The increase in non-combustion fuel loss Generating of CO & Soot \rightarrow Environmental aggravation **Inner pressure of furnace :** High \rightarrow Blow off of a flame \rightarrow Opening heat loss \rightarrow Increase in invasion air Low \rightarrow Increase in waste gas heat loss

Rationalization of Combustion of Fuel (Guideline)

Standard & Target air ratio for Industrial furnace

Type of	Gaseous Fuel		Liquid Fuel	
Metallic Furnace	Coetaneous		Intermittent	Continuous
	Intermittent			
Dissolution Furnace		1.25	1.35	1.30
	1.40			
For Casting (Target)	1.05~1.20	1.05~1.25	1.05~1.25	1.05~1.30
Billet Heating		1.20	—	1.25
	-			
Furnace (Target)	1.05~1.15		-	1.05~1.20
	—			
Heating Furnace		1.25	1.35	1.25
	1.35			
(Target)	1.05~1.20	1.05~1.30	1.05~1.20	1.05~1.30

External Surface Temperature / PDCA

Management	Control standard of furnace wall temperature Establishment & reconstruction
Measure Record	Temperature of furnace wall & inner furnace, work environment Observation (Leak of combustion gas and red heat / Distortion of Furnace Body)
Maintenance Check	Scheduled repair of Furnace wall
Execution Construction	Improvement of heat insulation (selection of proper insulator)

Prevention of Heat Loss by Radiation, Heat Transfer, etc. (Guideline)

Standard and Target of external surface temperature

			Bottom touched to
Inner Temp.(°C)	Ceiling	Side wall	the outer space
$1,300 \leq t$	140	120	180
	120	110	160
$1,100 \leq t < 1,300$	125	110	145
	110	100	135
$900 \leq t < 1,100$	110	95	120
	100	90	110
t < 900	90	80	100
	80	70	90

(1) Combustion process

- To improve the excess air ratio
- To recover the exhaust heat to use for air heater or recovery boiler or preheat of material to be heated in the process.
- Replace the burners to re-generative burners

Recovery Use of Waste Heat

Combustion Exhaust Gas Combustion Air Preheating \rightarrow Recuperator

Water supply Preheating

Waste heat Recovery Boiler

Raw Material Preheating

Fuel Preheating

Recuperative Burner Regenerative Burner

Concept of High Temperature Air Combustion- Combustion Stability

Measured NOx and CO emission affected by Diluted Air Temperature and O₂ concentration

4. Management System

- Energy 'Navi'
- Overview of Management System
- System Development

Outline of Energy Fee Indication System ("Energy Conservation Navi")

across the nation.

(example) Overview of Electricity Management System

Development of Energy Saving Control Technology for IT:

Energy Savings of 8 to 20% in Households, Office Buildings, and Factories

1.Objective

Electrical devices used in households, office buildings, shops, and factories

2.Main development items (target: 2002)

Using network:

- •System that controls the entire loss of electricity minimal
- •Information transmission interface that can be integrated into devices
- •Compact and highly efficient inverter used in factories

3.Provisional calculations of energy savings upon completion of the development

Households : 20%

Office buildings and shops : 14%

Factories : 8%

Figure 3: Relationship between Current R&D and Conventional Technologies

Applicable objective	House holds	Office buildings and shops	Factories	District	
Field	People's livelihood		Industry	Autonomous body, electricity, and gas	
Current R & D Conventional	Development of technology for a reduction of power consumption Development of a total energy saving system with a network (utilize the existing network technology)				
technologies (including technologies under development)	Home automation technology ECHO, NET, HEMA, etc.	Building monitoring & control technology BEMS, BACnet, etc.	Factory equipment monitoring & control technology Field Network etc.	Automatic electricity meter reading and additional information service DSM*, OpenPLANET, etc.	

5. Methodology (Way of Thinking)

- General Energy Management Items
- Promotion Method for Energy Conservation
- Bentimark Activity
- Cleaner Production
- Strategy of NEDO
- International Cooperation Method

General Energy Management Items

- Management System
 - Organization System (CPU)
- Measurement & Recording
 - Energy Consumption
 - Daily, Monthly, On Real Time
 - Energy Intensity
 - Products, Consumption Rate
- Maintenance & Management
 - Equipment's, Insulation, Cleaning ...
- Environmental Management
 - CO2 Reduction, Waste Treatment ...

Items of Thinking

Stop

: Stop Unnecessary Energy

: Repair Equipment Defect

- Repair
- Turn off
- Reduce
- Work
- : Reduce Dresser, Temperature
- **Recover** : **Recover** Waste Energy

: Intermittent

Replace : Energy Source, Equipment **Procedure**

Bench Marking of Energy Consumption Unit in Japan

Concept of Bench Marking Bench Mark: Target with range Best Target Data , Target Process Bench Mark Data: Actual Best Data for establishing Target Bench Mark Activity: Activity Story in order to achieving Best Target Best Practice: Best Story Success Story: Successful Case of Implementation to achieve Best Target

Concepts of Cleaner Production (1)

- Technologies of Air Pollution, Water Pollution and Water Treatment were called *End of Pipe*.
 Technology Because they disposed of pollutants at outlet.
 - (Against that, in Agenda 21 adopted by "United Nations Conference on Environment and Development (*Global Summit*) " in 1992, "Cleaner Production (CP)" was suggested to progress.)
- CP includes not only the conventional technologies for each measure (*Hard Technology*), but the technologies by manageable methods (*Soft Technology*), based on the idea of reducing the environmental burden in every process from extracting of raw materials to disposal of products and reuse.

Objects of Cleaner Production

Reduction trend of COD of Pulp&Paper industry

Strategy of NEDO for Environment &

Energy Efficient Technology

ECCJ

(NEDO : New Energy and Industrial Technology Development Organization)

1. New Sunshine Program (New Technology Development)

6. Energy Saving Technology

- Common (many industries)
- Process (example of Iron & Steel,Ceramic, Pulp & Paper, Power Generation)
- Power Plant, Cascade Utilization
- HiTAC (High Temperature air Combustion Technology)

Classification of Energy Saving Technology

- 1. Process Technology :
- (1) Common Technology
- (2) Process Technology

Production Equipment

Auxiliary Machinery & Equipment

Operation & Management

2. Energy Manager System:

Heat: Thermal Conservation Technology

Electricity : Electrical Conservation Technology

Flow diagram of energy saving technologies applicable to many industries

Iron & Steel : Production Process and Energy Saving Technology

Ceramic (Cement) : Production Process and Energy Saving Technology

Electricity Generation : Power Generation and Energy Saving Technology

Effect of Measures and Dissemination Rate of Typical Equipment for Energy Conservation

Pato	Decrease of Energy	Typical Energy	Dissemination
Industry	Intensity (94/73)	Conservation Equipment	as of 1998
Iron &Steel	29 %	Continuous caster (CC)	100 %
		Blast furnace top gas pressure recovery equipment (TRT)	e 100 %
		Coke dry quenching equipmen (CDQ)	t 91 %
Petrochemic	al 58 %	High-efficiency naphtha cracking reactor	100 %
		High efficiency compressor	100 %
		Gas turbine	100 %
Cement	65 %	SP, NSP kiln (Heat recovery)	100 %
Paper & Pulp	61 %	Continuous digester	100 %
		So	ource : ECCJ

Trends of Gross Thermal Efficiency (HHV)and Transmission and Distribution Loss in Japan

Trends of Steam Pressure and Steam temperature on Thermal power plants in Japan

Trends of Development on Unit capacity of Thermal Power Plant in Japan

Example: Illustration of Combined Cycle Assembling

Conclusion

- Energy Management
 Energy Saving should be
 Promoted Practically &
 Steadily
- The Results will be
 - Improvement in Productivity
 - Cost Reduction
 - Life Keeping of Facilities
 - Environmentally Friendly, Waste Reduction

Apply the Concept of Bolzmann's Principle to Activity - 2

