November 5, 2003

17. A Field Study of Thermal Power Plants

火力発電所視察 (資料)

NANKOU Thermal Power Plant THE KANSAI ELECTRIC POWER CO., INC.

関西電力株式会社 南港発電所 計画課

NANKO POWER PLANT

The Kansai Electric Power Co.,Inc.

Area Map

Plant Capacity (KEPCO)

Power Output (KEPCO)

Fossil-fired Power Station Rated Capacity (43 units, 17531MW)

Location of Nanko Power Plant

Mechanism of Combined Cycle System

Conventional Type (Nanko No.1 unit)

Thermal Efficiency

44% LHV

Combined Cycle Plant

(Himeji1 No.5 unit)

Thermal Efficiency 54% | F

54% LHV (40% HHV)

Flue Gas Denitrification Facility

Flue Gas Denitrification Facility

Nanko Power Station Waste Water Treatment System

An Example of the Composition of Flue Gas (LNG fired Power Plant)

Carbon dioxide 9% Nitrogen oxides 0.001%

Flue Gas Carbon Dioxide Recovery Pilot Plant

•Gas to be treated :Flue gas from NG boiler

 Quantity of gas to :600m³N/h (about 200kW)

be treated

•Solvent : Alkanol amine

•CO2 recovery rate :90%

Purity of recovered CO2 :99.9%

• Quantity of recovered CO2:2t/day

CO₂ Recovery System Process Flow

Dimethyl Ether Synthesis from Carbon Dioxide

DME synthesis reaction from CO₂ by catalytic hydrogenation

$$\frac{\text{CO}_2}{\text{CO}_2} + \frac{\text{3H}_2}{\text{3H}_2} \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O} + 11.7\text{Kcal/mol}$$
(methanol)

$$2CH3OH \rightarrow \frac{CH3OCH3}{CME} + H2O + 5.6Kcal/mol$$

• Catalyst : DME synthesis hybrid

catalyst

•Quantity of catalyust: 100mL

Filled up

• Quantity of supplied : CO₂ 9NL/h

gases H₂ 27NL/h

• Methanol/DME : 0.5L/day

production

•Reaction temperature : 250~300°C

•Reaction pressure : 4~10MPa

