November 12, 13, 14, 2003

# 23-2 Model Country – Workshop on Energy Conservation Policies Planning

ワークショップ

#### 23. Workshop

Energy Efficiency and Conservation for Central and Eastern European Countries

### Method of calculating test results

# $\bigcirc$ Air density ( $\rho$ )

 $ho = 1.293 \times 273 / (273+t) \times p / 760$ 

| 1.293 | : Value at air density of 0 $^{\circ}$ C 760 mmHg   |
|-------|-----------------------------------------------------|
| 273   | : Temperature in Kelvin (K)                         |
| t     | : Measured ambient temperature (°C)                 |
| р     | : Atmospheric pressure in the test room (mmHg)      |
| 760   | : Atmospheric pressure at standard condition (mmHg) |
|       |                                                     |

 $\bigcirc$  T (To be used in calculating the volume of air)

Volume of air Q= 
$$60 \times A \times v$$

| А  | : Cross-sectional area of tube (m <sup>2</sup> )                                                       |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------|--|--|--|--|
| v  | : Velocity of flow of air (m/s)                                                                        |  |  |  |  |
|    | $\underline{\mathbf{v}} = \sqrt{(2 \times \mathbf{g} \times \mathbf{\rho})} \times \sqrt{\mathbf{Pd}}$ |  |  |  |  |
| g  | : Acceleration of gravity 9.80665 $\text{m/s}^2$                                                       |  |  |  |  |
| р  | : Air density $kg/m^3$                                                                                 |  |  |  |  |
| Pd | : Dynamic pressure mmAq                                                                                |  |  |  |  |

by substituting the v formula into v,

$$\mathbf{Q} = \underline{\mathbf{60} \times \mathbf{A} \times \sqrt{(2 \times \mathbf{g} \times \boldsymbol{\rho})}} \times \sqrt{\mathbf{Pd}}$$

by taking the double-underlined area as T,

$$Q = T \times \sqrt{Pd}$$

From this test results of the pipe resistance, the pipe 100 A (inside diameter: 105.3 mm) will have the following T value:

$$\rho = 1.293 \times 273 / (273+35) \times 764 / 760 = 1.1521$$
  
T = 60×(105.3<sup>2</sup>×1000<sup>-2</sup>× π / 4) × \sqrt{(2×9.80665 / 1.1521)} = 2.1559

 $\bigcirc$  Temperature conversion factor K

Values should be converted into those at the standard condition of 760 mmHg (1013 hPa) 20  $^{\circ}$ C

$$K = (273+t) / (273+20) \times 760 / p$$

Multiply by this K value to convert values into those at the standard condition.

#### 23. Workshop

Energy Efficiency and Conservation for Central and Eastern European Countries

### Drawing a performance curve

The air quantity Q in m<sup>3</sup>/min, the shaft output L in kW, and blowing output La in kW and the efficiency  $\eta$  in percent are given by:

$$Q$$
 = 60  $\times$  A  $\times$  v

$$L = \left(\frac{I}{I_0}\right) \times L_0$$
$$L_a = \frac{P_1 \times Q}{6120}$$
$$n = \left(\frac{L_a}{100}\right) \times 100$$

(L)

where

Measurement of volume of air using a Pitot tube  $v = c \sqrt{\frac{2g \bullet Pd}{p}}$ C = Average correction factor (PITOT COEFFICIENT) With the Pitot tube used in this training, C = 1 ( refer to the attached documents)

A= sectional area of the duct m<sup>2</sup> v= flow velocity in m/s, given by  $v = \sqrt{(2 \times g / \rho)} \times \sqrt{Pd}$ g= gravitational constant 9.80665 m/s<sup>2</sup>  $\rho$  = specific weight of air kg/m<sup>3</sup> I = current consumption of the motor A I<sub>0</sub> = rated current of the motor A L<sub>0</sub> = motor power kW Pt = total pressure (Ps+Pd) mmAq Ps = static pressure mmAp Pd = dynamic pressure mmAp The conversion rate of 1 mmAp = 9.80665 Pa is applicable.

The performance curve is drawn on the basis of these parameters



Illustrated explanation of total, static, and dynamic pressures  $P_{1}$ 

Pt (total pressure) = Ps (static pressure ) + Pd (dynamic pressure)  $23. \ {\rm Workshop} \\ {\rm Energy} \ {\rm Efficiency} \ {\rm and} \ {\rm Conservation} \ {\rm for} \ {\rm Central} \ {\rm and} \ {\rm Eastern} \ {\rm European} \ {\rm Countries} \\$ 

### **Pitot Tube Test Inspection**

| Product           | JIS Type | Date        | May 13, 2003 |          |     |  |
|-------------------|----------|-------------|--------------|----------|-----|--|
| Туре              | LK-3     | Atmospheric | 1 atm        |          |     |  |
|                   |          | Pressure    |              |          |     |  |
| Product. No       | 32M183   | Temperature | 22°C         | Humidity | 72% |  |
| Pitot Coefficient | C=1.00   | Kind of Gas | Air          |          |     |  |

Pitot coefficients between 0.99 and 1.01 are indicated as 1.



23. Workshop

Energy Efficiency and Conservation for Central and Eastern European Countries

# General classification of inverter control



\* The training equipment this time adopted PWM method  $\rightarrow$  V/F control.

This method controls the motor magnetic flux or torque through the voltage.



voltages of the pulse width into a sign wave.



Waveform of inverter output