

EXPERIENCE and APPLICATION of ENERGY EFFICIENCY and CONSERVATION in LECES PULP AND PAPER MILL

PRESENTED BY

SUBAGYO

CONCLUSION

LECES PULP & PAPER MILL OVERVIEW

COVER

MILL

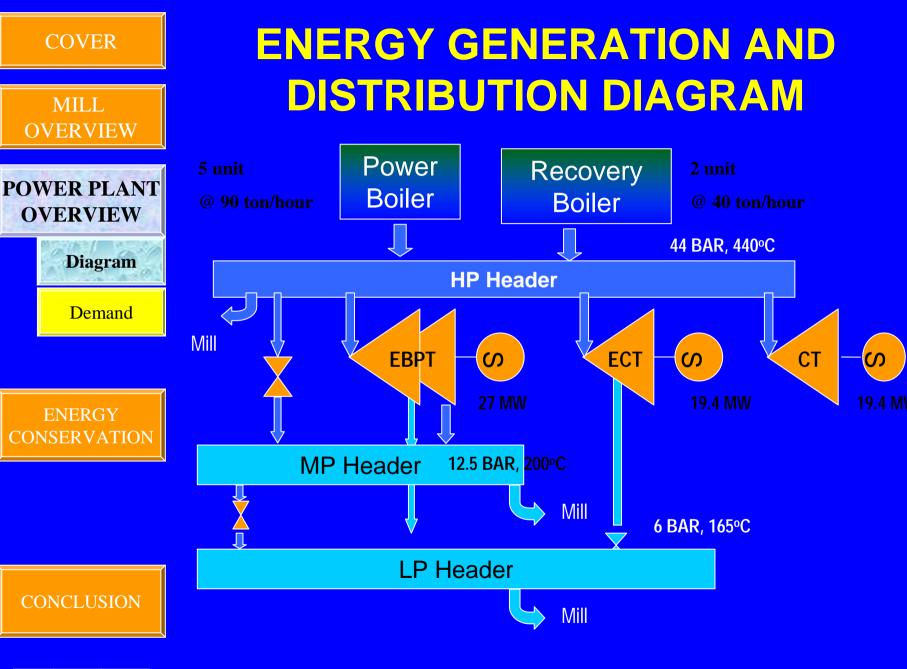
POWER PLANT OVERVIEW

ENERGY CONSERVATION

Consist of: a. Paper Machines **Bagasse Pulp Plant** b. **Deinking Plant** C. Waste Water Treatment Plant d. e. Steam Power Plant

Ρ
P
Ρ
Ρ
Ρ

COVER


MILL MAIN PRODUCTION

Paper Machine	Kind of Product	Capacit
Paper Machine 1	Liner	30 ton/day
Paper Machine 2	Industrial paper, Writing paper	60 ton/day
Paper Machine 3	Writing & Printing paper	175 ton/day
Paper Machine 4	Tissue	30 ton day
Paper Machine 5	Newsprint, Writing & Printing paper	275 ton/day

CONCLUSION

	COVER				
C	MILL DVERVIEW			ENI ai	
	WER PLANT VERVIEW			HP S	
	Diagram			Mill Op	
	Demand			Maximu	
				Normal	
CO	ENERGY NSERVATION			En	
	Ň			Mill	
			Op	eration	
6	ONCLUSION	Maximum		ĺ	
	UNCLUSION		No	rmal	

ENERGY GENERATION and CONSUMPTION

HP Steam Generation

Mill Operation	ton/hour
Maximum	264
Normal	172

Energy Consumption

Mill	Electricity	Steam (ton/hour)		
Operation	MW	6 barg	12 barg	33 barg
Maximum	33.87	100.10	25.80	4.40
Normal	24.55	65.00	2.20	4.40

ENERGY

ENERGY CONSERVATION

CONSERVATION Aim Background Planning Implementation

Aim :

Decreasing excess energy used Improved efficiency of the equipment

Background


Energy cost 24% of production cost 1. **Government policy** 2. 3.

Environment issue

Planning Implementation

Power Plant performance 4.

POWER PLANT PERFORMANCE

Efficiency Power Plant decrease, caused by:

- 1. Boiler Deterioation
- 2. Steam Turbine Deterioration
- 3. Low Power factor

BOILER DETERIORATION

1. SLAG AND DEPOSIT AT FIRE SIDE DUE TO LOW QUALITY OF OIL

2. SCALE AND FLAKE AT FIRESIDE HIGH TEMPERATURE CORROSION

3. RUPTURE OVERHEATING

CONCLUSION

Implementation

COVER

ENERGY CONSERVATION By PTKL

Aim

Background

Policy Power Plant

Boiler Deterioration *Turbine* Deterioration Low Power Factor

Planning Implementation

CONCLUSION

STEAM TURBINE DETERIORATION

- Capacity of Extraction Steam Turbine (ECT) is 27 MW.
- Due to cracking at shaft of ECT, this turbine operate maximum at 16 MW, so to fulfill electricity demand the Power Plant should operate ECT and CT
 - The operation of ECT and CT need more steam about 8 ton/hour
 - **Potensial loss USD 1 million/year**

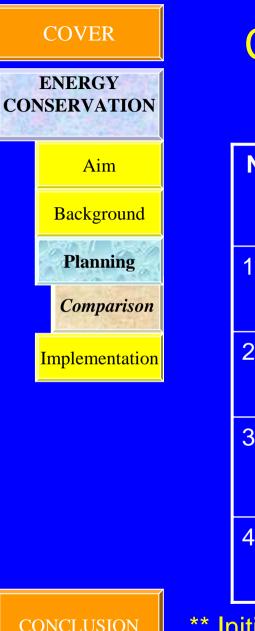
LOW POWER FACTOR

- At 2000 the power factor at Power Plant was 0.74 (at power generation)
- ✓ Operation steam turbine could not optimize
- ✓ More motor and electricity equipment burnt

COVER

ENERGY

Implementation Minor



Planning

- A. Major
- 1. Short term
 - 1a. Modified from oil burner to gas burner (done, 2002-2003)
 - 1b. Retubing (done, 2002)
- 2. Long term (future expansion, 2007-2009), Changing the fuel from gas to coal
- 3. Repair Extraction Steam Turbine (ECT, 2007)
- 4. Install/adding capacitor (in progress)

B. Minor

- 1. Adding Economizer (done)
- 2. Operation Pressure Reducing Valve (PRV, done)
- 3. Extract Steam Control (done)
- 4. Replace and or repair steam traps were not working properly, piping system were leak (in progress)

Comparison of the Gas Fired and Coal Fired Boiler

Νο	Description	Unit	Existing (Gas Fired Boiler)**	Coal Fired Boiler
1	Efficiency system	%	54.2	51.6
2	Fuel cost	US\$/year (million)	14	8.8
3	Saving	US\$/year (million)	-	5.2
4	Investment	US\$ (million)	-	17

** Initial, after modified from oil fired

IMPLEMENTATION

MAJOR

SHORT TERM MODIFIED OIL FIRED BOILER to GAS FIRED BOILER (Fuel Conversion, had been done)

Technical Aspect

- No need atomizing and heater for gas
 - steam demand for no load decrease from 50 ton/hour to 42.5 ton/hour
- 2. The superheater and evaporator more clean
 - Efficiency the boiler increase
 - Maintenance cost decrease
 - Availability increase

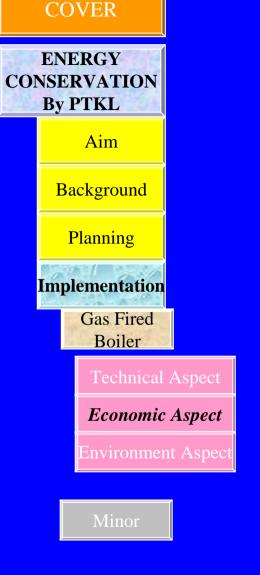
3. The quality of gas remaining constant

COVER

ENERGY CONSERVATION

By PTKL

Aim

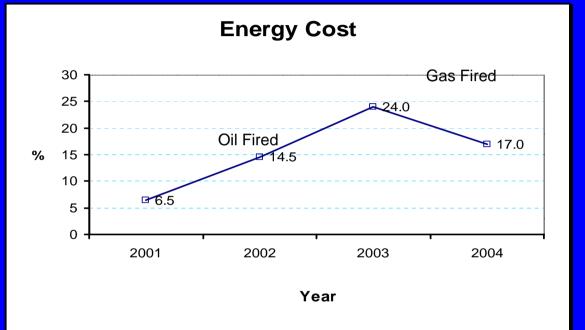

Background

Planning

Implementation

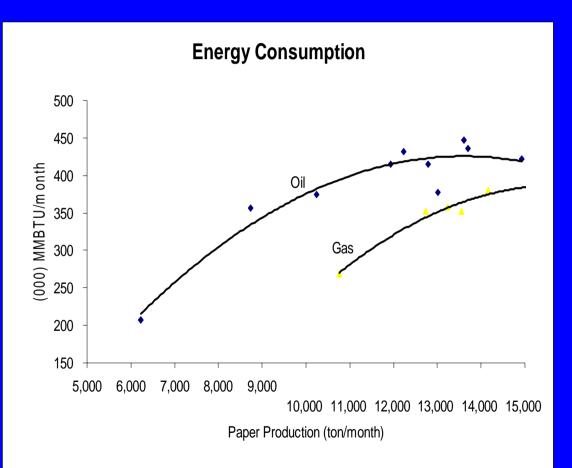
Gas Fired Boiler

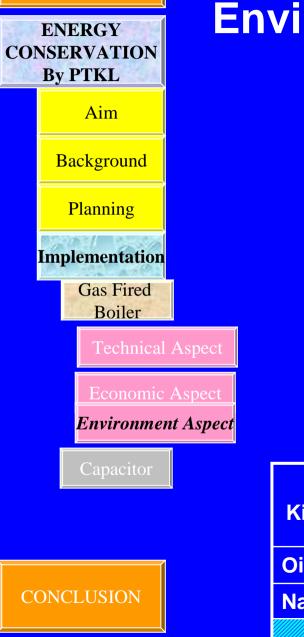
Technical Aspect



CONCLUSION

Economic Aspect


Gas Fired Boiler

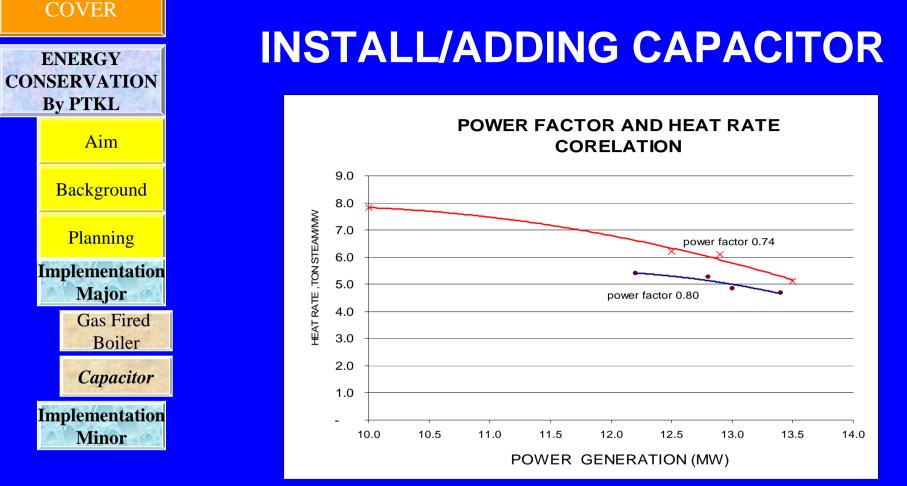

Investment : USD 1,600,000 (5 power boilers) Saving : USD 11,400,000/year Payback period: ± 2 months

Gas Fired Boiler **Environment Aspect** 1. Reduce energy consumption

COVER

Environment Aspect 2 Reduce green house offect by

2. Reduce green house effect by reducing CO₂ emission


Lesser CO₂ emission occurred by;

- 1. Carbon content in gas is about 71%, otherwise 86% in oil
- 2. Increasing efficiency at steam generation

Paper production ton/year 140,000

Fuel Consumption

Oil	MMBtu/ton		33.50
	m³/tor	1	0.87
Natural gas	MMBt	u/ton	25.82
	(000)Nm³/ton		0.73
	Fuel Consumption		CO ₂ emission
Kind of Fuel	m ³	(000)Nm ³	ton
Oil	121,280		357,612
Natural gas		101,615	181,732
			175,879

Technical Aspect


- 1. Less steam consumption, less fuel
- 2. Turbine operate optimum
- 3. Less Motor & equipment burn

Economic Aspect

Investment : USD 200,000 Saving : USD 800,000/year Payback period: ± 3 months

CONCLUSION

ENERGY CONSERVATION MINOR

CONS	NERGY SERVATION By PTKL		
	Aim		
	Declement		
	Planning		
In	nplementation		
	Major		
	Minor		
	Adding Eco	nomize	
	Operation	PRV	
Extract S Contr			
	,		

CONCLUSION

COVED

ADDING ECONOMIZER

done at 5 power boilerStack temperatureBefore: 180 °CAfter: 160 °CEfficiency increase: 1%Each boilerInvestment USD 78,000SavingUSD 28,600/year

Payhack pariod 27 years

Aim

Background

Planning

Implementation

Major

Minor

Adding Economize

Operation PRV

Extract Steam Control

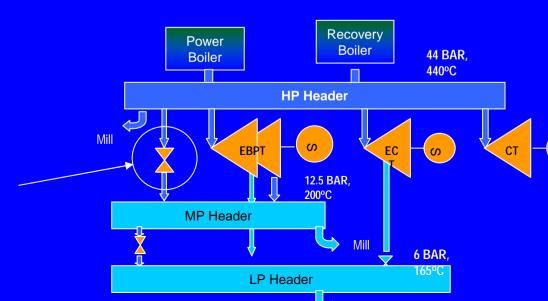
OPERATION PRV

Problem

 \checkmark

 \checkmark Valve slightly sticky and difficult to open once it is closed.

- Kept manually opened $\pm 20\%$, higher than actual demand
- ✓ PRV MP to LP also opened 20% automatically


Program (done)

Repair PRV HP to MP

Result

V

- PRV MP to LP closed, efficiency of ECT improve
- ✓ Save expected 1 ton steam HP/hour equal USD 12/hour

ENERGY CONSERVATION Aim

Background

Planning

Implementation

Major

Minor

Adding Economize

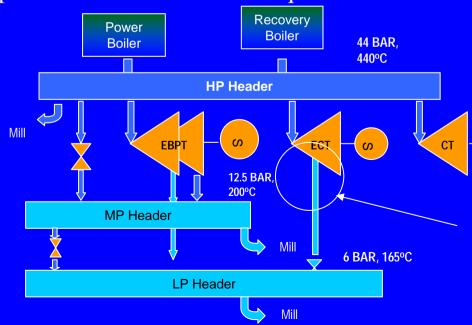
Operation PRV

Extract Steam Control

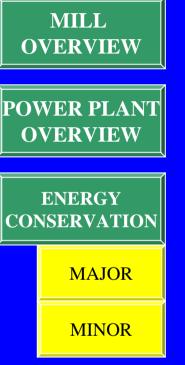
EXTRACT STEAM CONTROL

Problem

 \checkmark


- ✓ Extract steam controlled about 6.5 bar
 - Steam required at paper mill 2.5 bar; 140°C

Program (done)


Reduced pressure controlled to 6.0 bar

Result

- ✓ Improve efficiency of ECT
- ✓ Save expected 1 ton steam HP/hour equal US\$ 12/hour

CONCLUSION

COVER

- 1. Program in energy conversion from fuel oil to gas had been done, apparently to reduce the energy cost from USD 22.05 million/year to USD 11.45 million/year.
- 2. The future expansionis is changing the fuel from gas to coal
- 3. Increasing power factor from 0.74 to 0.80 reduce heat rate of power generator up to 6%.
- 4. Improve power factor by installing new capacitor, target from 0.80 to 0.90 is still in progress.
- 5. Due to tight production and marketing schedule repairing the shaft of ECT will be done after coal fired boiler build.

