Energy Conservation for the Philippine Steel and Iron Industries: Case Studies

Loreto C. Carasi

Philippine Council for Industry and Energy Research and Development

Department of Science and Technology

17 November 2006

Twin Tower Hotel, Thailand

OUTLINE

About DOST/PCIERD
 PCIERD EE & C Initiatives
 EE&C for the Philippine Steel and Iron Industry
 Conclusion

DEPARTMENT OF SCIENCE AND TECHNOLOGY (DOST)

Premier science and technology body Mandates: Central direction, leadership & coordination Policy, program & project formulation Councils, R&D Institutes, Service Institutes, Regional Offices

DOST Sectoral Planning Councils

- Philippine Council for Industry and Energy Research and Development (PCIERD)
 - Philippine Council for Agriculture, Forestry and Natural Resources Research and Development (PCARRD)
 - Philippine Council for Aquatic and Marine Research and Development (PCAMRD)
 - Philippine Council for Advanced Science and Technology Research and Development (PCASTRD)
 - Philippine Council for Health Research and Development (PCHRD)

- R&D
- INSTITUTION BUILDING
- MANPOWER
 DEV'T AND
 SCHOLARSHIP
 - SEMINARS AND CONFERENCES
- TECHNOLOGY TRANSFER
- POLICY DIRECTIONS

PCIERD Mandates

 Industry & energy policies, strategies, plans and programs

- Fund programming & allocation
- Project & program monitoring
- External fund generation

Services Offered by PCIERD

Provides Grants-in-Aid (GIA)
 Grants applied S&T scholarships
 Disseminates & promotes S&T information
 Supports scientific & technological services

SECTORAL COVERAGE FOOD & FEED □ PROCESS / CHEMICAL TEXTILE AND GARMENTS ☐ MINING & MINERALS METALS & ENGINEERING □ TRANSPORTATION ENVIRONMEN **DISASTER AND MANAGEMENT**

PCIERD EE & C Initiatives

- Capacity Building
 - Establish Core of Experts in the Region
 - Factory Energy Audit on SMEs
 - GAP Funded
 - PCIERD Funded
- Infrastructure Support
 - Provision of equipment
- Policy Support
 - Report to DOE the DOST's Energy Savings
 - Establishment of Vehicle Research and Testing Facility
 - Promotion of Biofuels

EE & C for the Philippine Steel and Iron Industry

Objectives of the program:

- To provide technological exchange of information and expertise
- To conduct human resources development
- To conduct energy audit and technical assessment on the selected industries
- To establish network and linkages among the local and Japanese industries

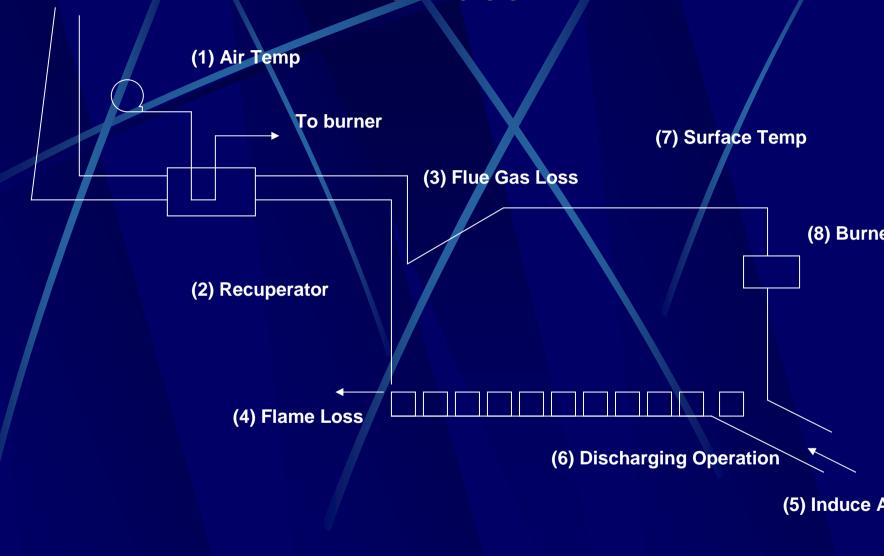
Company A

Products

 Plain and deformed steel bars and rods for concrete reinforcement

- Production capacity
 - 250,000MT per year

Total Energy consumption per year


- Electricity
 - 25 Mw-hr
- Fuels
 - 9,500 Kilioliters

Number of employees 147

Location

Metro Manila

Furnace

Findings:

- Preheated Air : Defective instrument to grasp the preheated air temperature
- Recuperator: Defective recuperator tubes
- Waste Gas Loss: Temperature of outlet is 798 °C % Oxygen in flue gas is 3.8%
- Heat Loss from Charging Door: Temp. of gas from charging door is 691 °C. Open space is measured at 0.92 m²
- Induced Air from Discharging Door: Amount of air is 4,900 m³ per hr
- Discharging Operation: No problem
- Heat Loss from Surface: Temperature of furnace shell external surfaces (roof and side walls) is 90-100°C
- Burner: Straight type burners is used

Cooling System (Pumps)

Skid Furnace
Operates well
Mill
Motor loading is low
Quench
Motor loading is low

Compressors

Loading and Unloading time : Ok Load requirements vs. Delivery capacity: Ok Discharge Pressure vs. Required Pressure at the User Side : Decrease the discharge pressure gradually □ Leakage Along Supply Line Draining of Moisture

Implemented Measures

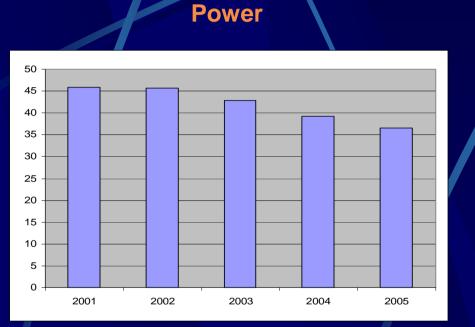
Furnace:

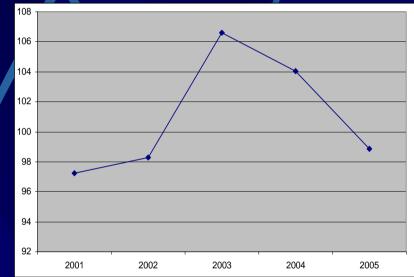
- Instrument wirings on the control panel were modified to get readings of pre-heated air
- Repair of recuperator to eliminate air leakage
- Installation of "heat curtain" at the charging door of furnace to minimized heat loss (Later replaced with sliding-plate type)
- Reduction of induced air from discharging door
- Improvement of burner combustion efficiency
- Minimizing heat loss from furnace
- Improvement of furnace data monitoring

Implemented Measures

Pumps/Blowers:

- Improvement of combustion blower motor loading
 - The 100 HP motor for combustion blower was replaced with a 75 HP motor. The motor loading was increased from 70% to 95%.
- Repair of Rolling Mill Circulating Pump
 - The impeller was replaced and the seal ring was repaired. Motor loading was increased from 70% to 95%.


Air Compressors:


- Minimized air leakage in the system
 - Conduct leak test for the air supply
 - Correction of air leakages in the system is a continuing program

Mill bay Lighting

• Used/installed skylights at strategic locations inside the mill to enhance illumination.

Fuel and Power Consumption Trends

Electricity

	2001	2002	2003	2004	2005
Fuel, Lit/ton	45.88	45.77	42.9	39.26	36.51
Power, Kw-hr/ton	97.22	98.28	106.58	104.04	98.87

Amount of Energy (2004)

Particular	Energy S		Savings	
	Lit/ton	%	Savings (Peso)	
Reduction in Fuel	3.64	8.48	4.167 M	
	Kw-hr/ton	%	Savings (Peso)	
Reduction in Power	2.54	2.38	1.418 M	
TOTAL ENERG	Y SAVINGS	S	5.585 M	

Amount of Energy (2005)

		Energy Savings		
	Particular	Lit/ton	%	Savings (Peso)
Reduction in Fuel		2.75	7.0	3.4M
		Kw-hr/ton	%	Savings (Peso)
Reduction in Power		5.17	4.97	2.8 M
TOTAL ENERGY SAVINGS 6.2M			6.2M	

Plans

- Lengthen the heating zone of the furnace to reduce flue gas temperature
- Additional insulation on the furnace shell outside surfaces
- Use of inverter control for the TTL process pumps
- Replacement of straight-type burners to swirl type burners
- Close Monitoring of plant power factor to ensure PF is always at its optimum
- Recycling of used oil and grease
- Provision of pneumatic lubricator
- Continue the checking/repair of air leakages in the plant

Company B

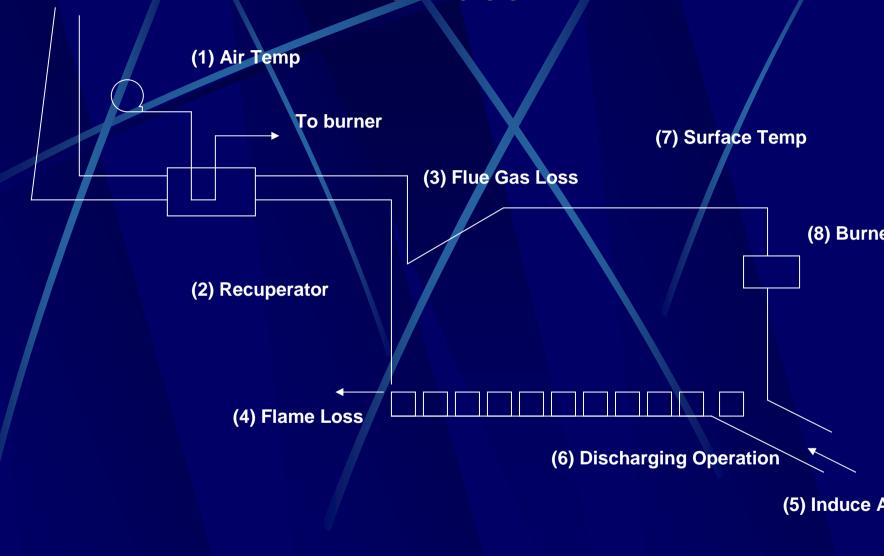
Products

Deformed bars

Production Capacity

• 121,337.22 MT per year

Annual Energy Consumption (average)


- Electricity = 13.4 MWH
- Fuels = 4,114 kiloliters

Number of Employees 185

Location

Metro Manila

Furnace

Findings:

Preheated Air Temp : Low @ 224°C

- **Recuperator: Check leakage**
- Waste Gas Loss: Waste gas temperature at recuperatror inlet is quite low at 665°C

Heat Loss from Charging Door: Temp. of gas from charging door is 680 °C Open space is measured at 0.92 m²

Induced Air from Discharging Door: Amount of air is 1,100 m³ per hr

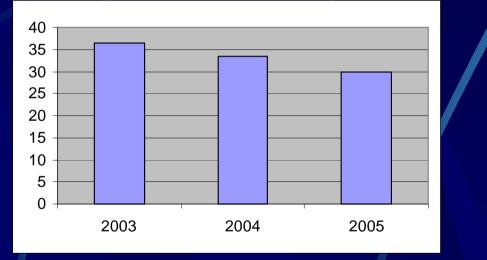
Discharging Operation: 2-3 billets are discharged together, and the 2nd and 3rd billets cannot be rolled coz its temp. has lowered and thus require further heating

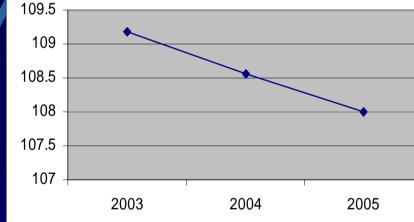
Heat Loss from Surface: Temperature of furnace shell external surfaces (Ceiling: 100-130, Side: 85-95°C

Burner: Straight type burners is used

Furnace Scale Generation: The ave. concentration for waste gas oxygen concentra

is 1.7%


Implemented Measures


- Replacement of existing recuperator
- Installation of insulation curtain at the inlet door of the furnace
- Reduce opening time of billet discharge door
- Reduction of waste gas oxygen concentration from 1.7% to 1.3%
- Raising the furnace pressure setting
- Optimization of Billet Reheating Furnace
- Application of cladding insulation on the oil pipe lines
- Increase setting of oil heaters at the main line (soaking and heating zone) from 90°C to 110°C
- Set-up energy conservation group

Fuel and Power Consumption Trends

Power

Electricity

	2003	2004	2005
Fuel, Lit/ton	36.39	33.45	30
Power, Kw-hr/ton	109.19	108.56	108

Amount of Energy (2004)

Particular		Energy S	Savings
	Lit/ton	%	Savings (Peso)
Reduction in Fuel	2.94	8.08	4.206M
	Kw-hr/ton	%	Savings (Peso)
Reduction in Power	0.63	0.51	0.444M
TOTAL ENERGY SAVINGS			4.65 M

Amount of Energy (2005)

	Energy Savings			
Particular	Lit/ton	%	Savings (Peso)	
Reduction in Fuel	3.45	10.31	5.074M	
Reduction in Power	Kw-hr/ton	%	Savings (Peso)	
	0.56	0.52	0.377 M	
TOTAL ENERGY SAVINGS			5.451M	

Plans

- BRF heat conservation (charging and discharging side)
- BRF waste gas temperature monitor and control
- Use of stand alone electric furnace in preheating predetermined steel
- Demand KW monitor and control
- Make-up water volume monitor and control
- Compressed air leakage monitor and control

Company C

Products

Galvanized and Pre-painted Sheets/Coils

Production capacity per year (average)

- Continuous Galvanizing Line (CGL)
 - 34,703 tons
- Color Coating Line (CCL)
 - 27,588 tons

Total Energy Consumption (average)

- Electricity
 - CGL
 - 1,058 MWh per year
 - CCL
 - 845 MWh per year

Total Energy Consumption (average)

- Fuel consumption per year
 - CGL
 - Fuel Oil:577,728 liters
 - LPG: 256,513 kgs.
 - CCL
 - LPG: 492,170 kgs.
- No. of employees
 170
- Location
 - Laguna

Power and Electricity Consumption Trend

Continuous Galvanizing Line (CGL)

	2003	2004
Energy Consumption		
BFO/SFO, Liters	625,497	529,959
LPG, Kgs	290,349	222,678
Power, Kw-hr	1,196,234	920,634
Rate of Consumption		
BFO/SFO, Lit/ton	17.172	16.069
LPG, Kg/ton	7.971	6.752
Power, Kw-hr/ton	32.841	27.914

Power and Electricity Consumption Trend

Color Coating Line (CCL)

		2003	2004
Ene	ergy Consumption		
	LPG, Kgs	576,477	407,863
	Power, Kw-hr	954,965	734,896
Rat	e of Consumption		
	LPG, Kg/ton	19.106	16.313
	Power, Kw-hr/ton	31.650	29.393

Particulars		Energy Savings	
Reduction in Fuel	Kgs. per ton of product	% Savings	Savings (Peso)
LPG •CGL	1.219 2.793	15.3	1.327 M 2.304 M
CCL	Lits. per ton of product	14.6	2.304 IVI
Bunker Oil	1.103	6	0.654 M
	KW-hr/ton		
Reduction in Power			
•CGL	4.927	15	1.075 M
•CCL	2.257	7.1	0.305 M
	TOTAL		5.665 M

y

Implemented Measures

- System Improvement
 - Improved treading time from 5-6 minutes to 3 minutes
 - Installation of cartridge type coaters to reduce downtime in changing colors and replacing paint coater rolls
 - Installation of 12.5 MT overhead crane to handle bigger coil materials
 - Installation of horizontal direct fired LPG preheater
 - Change technology from zinc lead-lead-zinc hot dip galvanizing to a modified John Lysaght process
 - Installation o direct fired LPG coil heater
- Conduct study on peak kW
 - Reduced demand at CGL furnace
 - Reduced demand at CCL oven
- Improvement of power factor from 81% to 94%
- Improvement of light distribution at CCL

Plans

Decommission boiler using BFO

- Shift of fuel materials from BFO to SFO
- Improve burner firing at LPG preheater
- Decommission air dryers, exhaust gas from LPG direct fired alkali heaters used as air dryers
- Decommission smoothener rolls drive of 7.5kW
- Waste heat recovery at LPG heaters and dryers
- Conduct efficiency tests in ovens and furnaces for temperature profiling

Common measures implemented

- Minimizing heat loss from furnace
- Improvement of burner efficiency
- Improvement of pump motor loading
- Minimized compressed air leakage

Common plans

- Heat conservation on the reheating furnace
- Waste gas temperature monitor and control
- Demand kW monitor and control
- Make-up water volume monitor and control
- Compressed air leakage monitor and control

Conclusion

The participating factories shows positive response.

- Recommended measures or areas of improvement suggested by the experts have been implemented and it was reported that there was a great improvement in plant efficiency and significant savings was realized.
- Local skills were enhanced and they can now do energy audit by their own.
- The significance of Energy Conservation and Management has been recognized, which is evident to their new initiatives.
 - Setting-up of company's energy conservation targets
 - Creation of energy managers and auditors
 - Energy conservation are discussed during management meetings

PCIERD Website http://www.pcierd.dost.gov.ph