Development of a Technical Directory for Major Industries and Buildings for ASEAN Member Countries

Seminar on the Promotion on Energy Efficiency and Conservation (PROMEEC) Industry in Southeast Asia
Thailand, 17 November 2006

Development of a Technical Directory

Phase 2 of PROMEEC Activities

Implementation of Energy Audits and Recommended Improvements in Each Country

- Follow Up Survey to Find Actual Status
- Study on Barrier and Measures
- Consulting for Implementation

Dissemination of Technologies and Practices

- Preparation of Technical Directory
- Establishment of Database
- Workshop for Dissemination

Development of an "ASEAN Energy Management System"

Why Develop a Technical Directory?

- Introduce and promote technologies and best practices on EE&C available in the world and in ASEAN
- Encourage further investments in technologies and best practices
- Help create the market
- Promote a culture of increased efficiency
 - -Savings
 - -Employment
 - -Environmental Protection

- Designed to be user friendly
- Available for all users as it is web based
- •Displays a wide coverage of technologies and best practices
- Updated regularly
- Open for expansion

Contents of the Technical Directory

- Overview of Technology or Practice
 - Name of Technology
 - Energy Source/Practical Use
 - Outline and Effects
- Technical Description
 - Principle
 - Features
 - Mechanism
- Successful Cases
 - Energy Saving and Cost
 - Companies/Organizations

Status of Compilation

- •50 Technologies for Industries
 - Operation
 - Heat exchange
 - Machinery and equipment
 - Energy saving equipment
 - Welding
- •33 Technologies for Buildings
 - Operation
 - Regulator
 - Air conditioning
 - Electricity
 - Steam drain
 - Lighting improvement

Technologies for Industries

Application of Heat Pumps to a Fractionator

Boiler Re-circulation scrubber pump

Capacitor

Caustic soda production process, Brine electrolysis heat recovery line preheater Caustic soda production process, Energy-saving ion-exchange membrane electrolyzer

Caustic soda production process, Improvement of active cathode for ionexchange membrane method electrolyzer

Caustic soda production process Reduction of electrolytic electricity of brine electrolyzer

Circulating Fluidized Bed (CFB) Boiler Technology

Clean Boiler Waterside Heat Transfer Surface

De-inking Module Pumps

Development of Energy Conservation Technology for Manufacturing Plastic Products through Process Omission

Development of Energy Saving Distillation, Technology through Internal Heat Exch.

Development of Fundamental Technologies for Next-Generation Satellites

Development of Welding Technology of Steel Conservation Structures for Energy

Energy saving improvement of blowers and pumps

Energy saving of vacuum pump for paper-making machine

Fan Pump Impeller

Technologies for Industries

Heating Furnace Using Regenerative Burner

The integrated gasification combined cycle (IGCC) produces electricity from a solid or liquid fuel

High efficiency dehydrator for dryer of paper-making machine

High efficiency inverter driven screw compressor

Improvement of vacuum condenser

Improve Your Boiler's Combustion Efficiency

Installing power recovery turbines for heavy fraction oil hydro cracking plant

Install Removable Insulation on Valves and Fittings

Introduction of clinker pre-grinding roll crusher (Cement Production Finishing Section)

Ladle heating apparatus with regenerative burners

Overhead Vapor Chiller System

Power and Steam Balance System

Power receiving/transforming equipment

Primary Fan Pump Motors

Recover Heat from Boiler Blow down

Reducing excess air through modification to furnace dampers

Semiconductor Application Chip Project

Sensors for Smart Controller and Transfer Pump Motor Controller

Use Low-Grade Waste Steam to Power Absorption Chillers

Technologies for Buildings

Absorption Chiller

AC equipped with heat pipe

Use of water chilled in cooling tower during winter to cool telecommunications equipment rooms

Adjustment of air ratio in Boiler

Automatic Operation Control for Escalator

AVR with load management system

Building Automation System (BAS

Cogeneration System

Control of outlet temperature of cold water from chiller depending on the season

Control of the number of Elevators operating during nighttime

Daylight sensors' on-and-off control of lights near the windows

Diversion of emergency power generator to co-generation equipment

Drain water heat recovery

Energy Saving Module (Abbotly)

Environmental Energy Utilization System

Light Save (LSA2000B)

Technologies for Buildings

Outdoor Air Cooling

High-efficiency Gas Fired Air Conditioning System

Installation of inverters to cold water pumping system

Installment of automatic controllers to ducts of individual rooms

Insulate Steam Distribution and Condensate Return Lines

Placing of water saving type valve disc

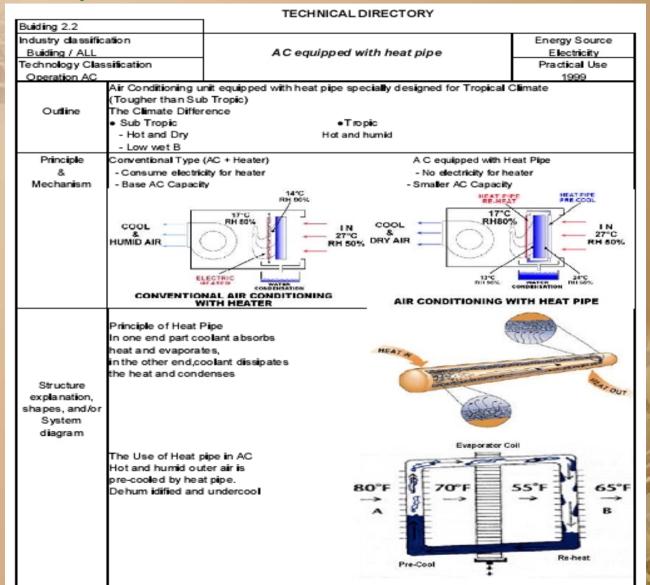
Process Heating System

Repair and maintenance of cooling tower

Reflector Light

Segmentation of lighting circuit

Solar Photovoltaic power generation

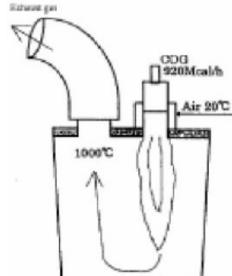

Technological Development for a Small, Highly Efficient Natural Gas Co-Generator

Test for Pumping System Efficiency

Variable speed drive on Air Conditioning System chilled water pump and condenser

Water Cooled Evaporative Air Conditioning

Water saving


Buildings

	AC Equipped with Heat Pipe used in Tropic Climate Comfort Zone S NI can be maintained. AC Capacity can be reduce by 15~20%. Operation cost can be reduce by 20~30%. Room RH can be controlled <60%, to prevent the grow of Fungi and Microorganisim.
Energy saving	AC Capacity can be reduce by 15∼20%
Green House Gas reduction (except C02)	Possible reduction correspondent to the reduction in electric power at power plants
Cost	0 (About the sam e as conventional AC)
effectiveness	Operation cost of AC (In case of 1HP (1kW)) (Preconditions) Operation time: 15 hours/day, 300 days/year, Electric Power Cost: Rp.500/kW h (US\$0.055/kW h) (Operation cost) 1kW x 15h/d x 300d/y x Rp.500/kWh (US\$0.055/kWh) Rp.2,250,000/year (US\$22)
Note	 Contacts for further information Ir. John Budi Harjanto Listijono M.Eng.Sc Universitas Katolik Indonesia ATM A JAYA, Fakultas Teknik Jurusan Teknik Mesin PT Metroplitan Bayu Industri

Industry - 1.27					
Industry classific	cation	Lada Harrian Annance with		Energy Source	
Iron & Steel	:E!:	Ladle Heating Apparatus with		Fuel Practical Use	
Technology Clas Machinery & Eq		Regenerative Burners		1990	
Outline		generative burners into the apparat			
	receives motion steel, a large energy saving is achieced. It also prolongs the life of the ladle refractories				
Principle	A regenerative burner system is occupied of a pair of burners which burn alternately for a determined				
&	time period and function as a exhaust duct while not burning. The heat of the high temperature exhaust gas is stored in the regenerator installed just after the burner, and the stored heat is used for preheating the combustion air				
Mechanism					
Description	Since the high is discharged recovery. In a	ey is as low as about 30%, in temperature exhaust gas without waste heat addition, the temperature is ide the ladle is uneven.	By installing a regen- system, the combusti- of about 900°C the et- temperature of 170°C efficiency of 30% are addition, the variation temperature distribut- ladle is improved to than about 30°C.	on air temperature xhaust air c, and the heat c obtained. In n in the ion inside the	
	Extraore par	CDG D 920Monl/b	Exhans gas	C +-may not ve → Air Responsessor	

Major Industries
Iron & Steel

Structure explanation, shapes, and/or System diagram

	4					
1	Energy Saving	Fuel saving of 56% correspond to montly consumption of 573 x 10 ³ Kcal, Increase of electric power				
1	effect	consumption by 239 x 10 ³ Kcal per month				
0	Economics	Investment amount : 24 million yen				
0	Equitment Cost	Improvement effect : 10 million yen/year				
		Investment payback: 2 - 3 years (excluding the refractory life)				
	Remark	As this apparatus has the automatic heating temperature control function, fuel consumption during				
		working is reduced as well.				
	References	Inquiry				
	Energy Saving, Vo	ECCJ				

Sources of Information

Reports of Energy Audits in Major Industries

Cement Food

Pulp and Paper Textile

Steel and Iron Petroleum Refinery

Caustic Soda Garment

Hydro Power Generation Ceramics / Porcelain

Reports of Energy Audits in Buildings

Researches (i.e. ECCJ, NEDO, ASEAN organizations)

We welcome information/inputs from you!!!

Thank you very much for your kind attention!!!

http://www.aseanenergy.org