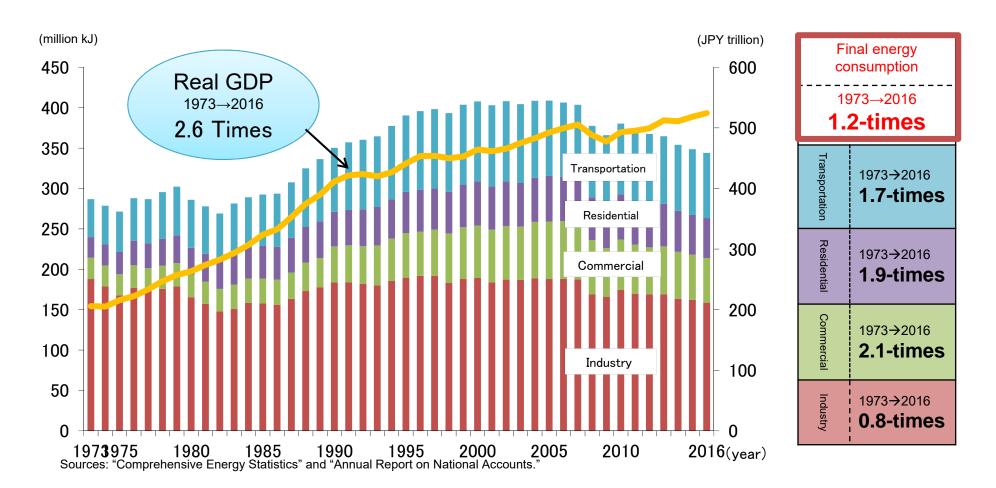


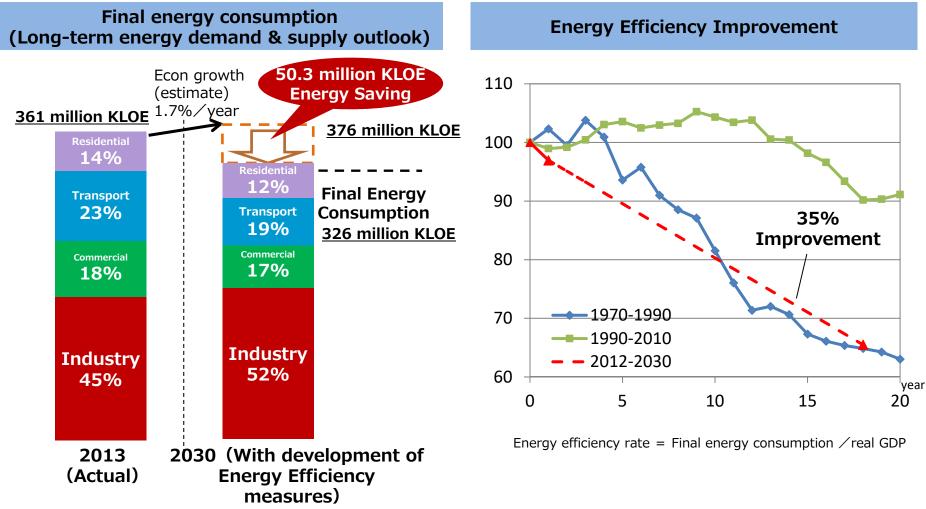
Top Runner Program

December 2019


Ministry of Economy, Trade and Industry [METI]

Agency for Natural Resources and Energy [ANRE]
Energy Conservation and Renewable Energy Department

Japan's Energy Efficiency Overview


Japan's Final Energy Consumption

- Japan's GDP growth between 1973 and 2016: 2.6 times
- Japan's final energy consumption increase between 1973 and 2015: 1.2 times

Energy Efficiency Improvement towards 2030

■ The Long Term Energy Supply and Demand Outlook 2015 aims to achieve 50.3 million KLOE energy saving, which requires further 35% efficiency improvement from 2013 to 2030.

Progress status of energy efficiency measures of "Energy Mix"

Total <approx. -50.30 million kl>

-10.73 million kl (Progress rate : 21.3%) as of 2017

Industrial Sector <approx. -10.42 million kL>

-2.39 million kl (Progress rate : 23.0%) as of 2017

Main measures

- Promotion of efficient lights including LED [0.58 / 1.08 million kl (54.1%)]
- Introduction of industrial heat pump [0.6 / 0.88 million kl (6.9%)]
- Introduction of industrial motors [0.11 / 1.66 million kl (6.6%)]
- Implementation of energy management through FEMS [0.09 / 0.67 million kl (13.2%)]

Commercial Sector <approx. -12.26 million kL>

-2.53 million kl (Progress rate : 20.6%) as of 2017

Main measures

- Promotion of efficient lights including LED [1.16 / 2.29 million k] (50.7%)
- Improve energy-saving performance of equipment by equipment top runner program [0.41 / 2.78 million kl (14.8%)]
- Implementation of energy management through BEMS [0.48 / 2.35 million kl (20.5%)]

Residential Sector <approx. -11.60 million kL>

-2.19 million kl (Progress rate: 18.9%) as of 2017

Main measures

- Promotion of efficient lights including LED [1.15 / 2.01 million kl (57.2%)]
- Improve energy-saving performance of equipment by equipment top runner program

[0.16 / 1.34 million kl (11.9%)]

• Promotion of energy-saving house

[0.24 / 3.57 million kl (0.7%)]

Transportation Sector <approx. -16.07 million kL>

-3.62 million kl (Progress rate : 22.5%) as of 2017

> Main measures

- Diffusion of next-generation automobiles [0.72 / 9.39 million kl(7.6%)]
- Other measures in transportation sector [2.91 / 6.68 million kl (43.5%)]

(Breakdown)

Freight transport [1.44 / 3.38 million kl (42.5%)]
Passenger transport [1.47 / 3.31 million kl (44.6%)]

Top Runner Program

"Top-Runner Program" for Equipment and Materials

- The "Top-Runner Program" is a mandatory program.
- The government set targets based on the most efficient performance of equipment on the market.
- Companies need to achieve such targets in 3 to 10 years.

32 equipment and materials

 Passenger vehicles
--

2. Air conditioners

3. Lighting equipment 13. Gas cooking

4. TV sets

5. Copying machines

6. Computers

7. Magnetic disk units

8. Freight Vehicles

9. Video cassette recorders

10. Electrical refrigerators

11. Electrical freezers

12. Space heaters

Gas cooking appliances

14. Gas water heaters

15. Oil water heaters

16. Electric toilet seats

17. Vending machines

18. Transformers

19. Electric rice cookers

20. Microwave ovens

21. DVD recorders

22. Routers

23. Switching units

24. Multifunction devices

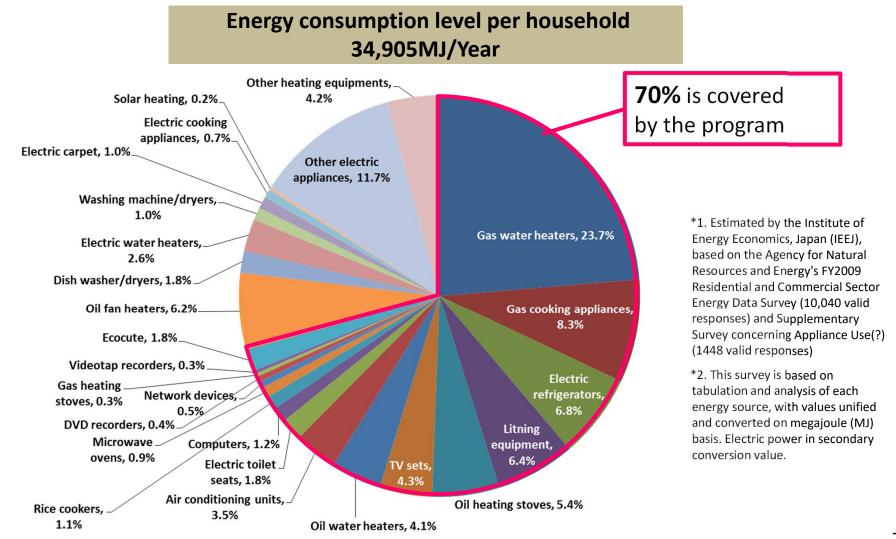
25. Printers

26. Electric water heaters

27. AC motors

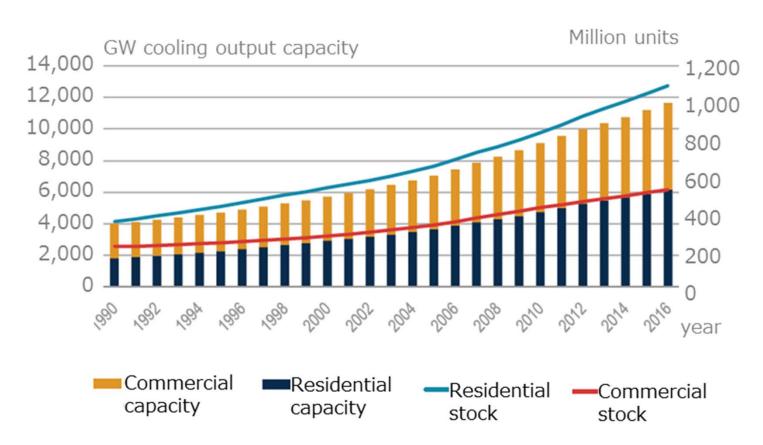
28. lamps

29. Showcase


30. Insulation materials

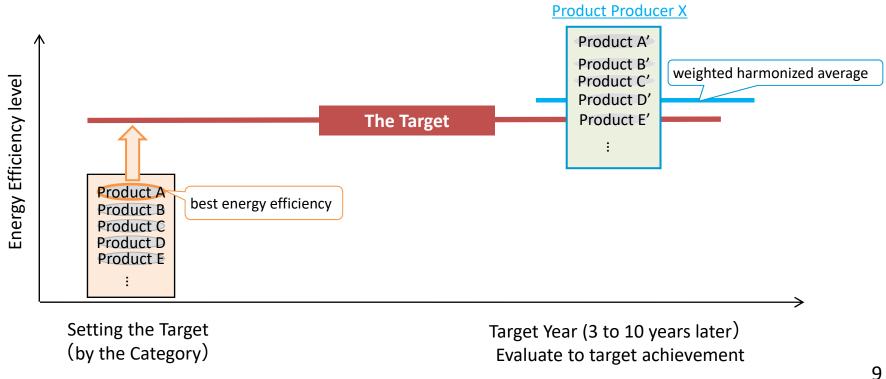
31. Sashes

32. Multi-paned glazing


Appliances & Equipment covered by the Top Runner Program

■ "Top Runner Program" is implemented in about 70% of the energy consumption in households.

Worldwide stock and capacity of ACs by sector


- The number of air conditioners(ACs) units is increasing worldwide (North America, Europe and Asia).
- Energy demand for AC is increasing.

Source: IEA(2018) The Future of Cooling Fig. 3.1

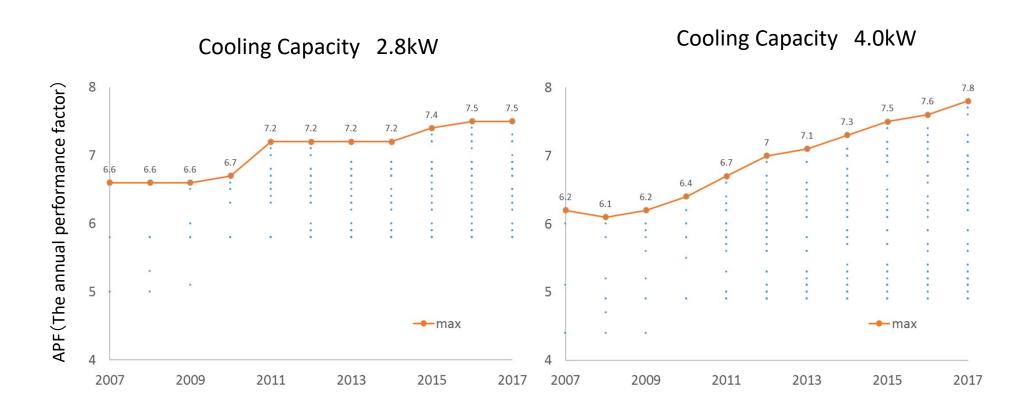
Outline of Top Runner Approach

- Setting a Top Runner Standard based on future technology progress and energy efficiency level of product which is a best energy efficiency product on this timing.
- By the product producer, They must be above the target line by sale quantity weighted harmonized average by the category at target year.

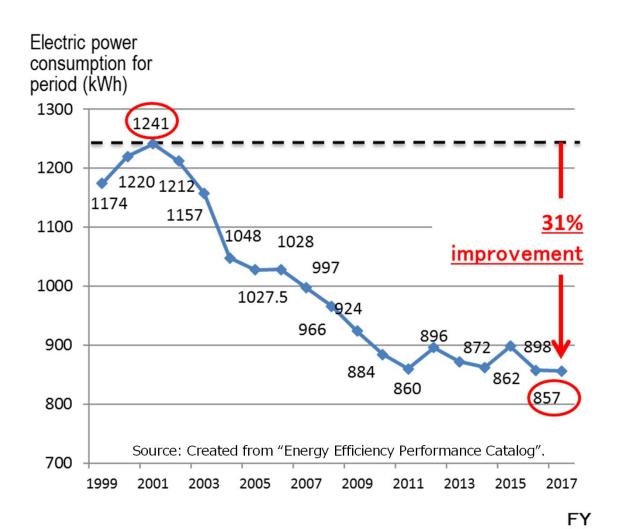
Top Runner Program Standard for Air Conditioners

(2) Air conditioners whose target fiscal year is FY 2010 and each subsequent fiscal year [for non-ducted, wall-hung type units for residential use with a cooling capacity of 4.0 kW or less (excluding individually controlled indoor multi-type units)]

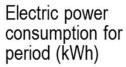
	Standard energy		
Cooling capacity	Dimension type of indoor units	Category name	consumption efficiency (APF)
Up to 3.2kW	Dimension-defined type	Α	5.8
	Free-dimension type	В	6.6
Over 3.2kW up to 4.0kW	Dimension-defined type	С	4.9
	Free-dimension type	D	6.0


Remarks: "Dimension Type of Indoor Unit" means that air conditioner models whose indoor unit has horizontal width of 800 mm or less and height of 295 mm or less shall be defined as a dimension-defined type. Air conditioners other than those of dimension-defined type shall be free-dimension type.

(3) Air conditioners whose target year is FY 2012 or any subsequent fiscal year after that (for classes E through G, FY 2010 or any subsequent fiscal year after that) [for residential use other than (2)]

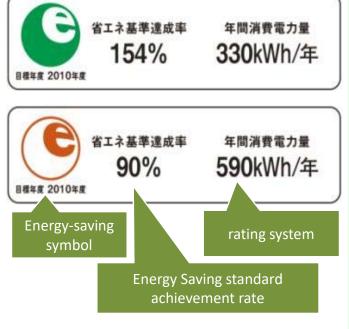

Cat	Standard energy			
Unit form	Cooling capacity	Category name	consumption efficiency (APF)	
Non-ducted wall-hung type	Over 4.0kW up to 5.0kW	E	5.5	
(except multi-type controlling operation of	Over 5.0kW up to 6.3kW	F	5.0	
indoor units individually)	Over 6.3kW up to 28.0kW	G	4.5	
Other non-ducted type	Up to 3.2 kW	Н	5.2	
(except multi-type controlling operation of	Over 3.2 kW up to 4.0 kW	I	4.8	
indoor units individually)	Over 4.0 kW up to 28.0 kW	J	4.3	
At les He	Up to 4.0 kW	K	5.4	
Multi-type controlling operation of indoor units individually	Over 4.0 kW up to 7.1 kW	L	5.4	
	Over 7.1 kW up to 28.0 kW	M	5.4	

Remarks: "Multi-type" refers to a type that has two or more indoor units connected to one outdoor unit.


Improvement of energy efficiency of ACs in Japan ①

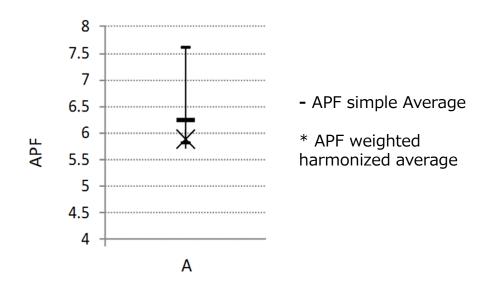
Improvement of energy efficiency of ACs in Japan ②

Improvement of energy efficiency of Friges in Japan



FY

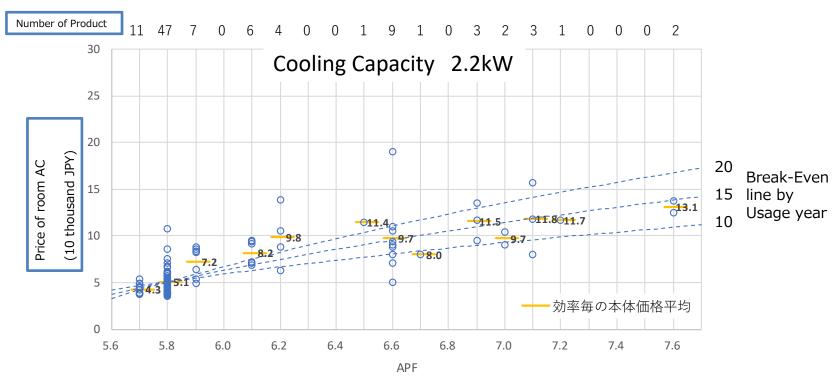
Energy saving Label Programs


- 「Energy Saving Label」: This energy saving label show the target year, energy-saving standard achievement ratio, annual power consumption. Also green mean that product achieve the target, orange mean that not achieve.
- 「Unified Energy-Saving Label」: This label show the relative energy-saving performance of marketed appliances by numbers of stars. 5 star is most efficient product. Also, show with a yearly electricity bill by the standard usage patterns to consider to buy. By this label, Consumers can be recognize and compare to energy efficiency performance for each products by the multistep assessment system.
- This label attached with Room AC, TV, Electric refrigerator, Electric freezer, Electric toilet seat, Lighting appliance.

Compare to APF in 2017

- A level of weighted harmonized average APF was lower that simple average of APF.
- This mean that there are high APF products are in the market, however, a share of lower APF AC product are high proportion of product line up on the product producers.

Ca	itegory	А
	Max APF	7.6
	Min APF	5.8
	APF simple	6.25
2017	average	0.23
2017	APF	
	weighted	5.89
	harmonize	5.69
	d average	
Target level		5.8


Example calculation of room AC energy consumption

Room AC: 2.2 kW (most usual AC capacity in Japan)

APF 5.8 : 913 kWh (24,654 JPY) (same as target level product)

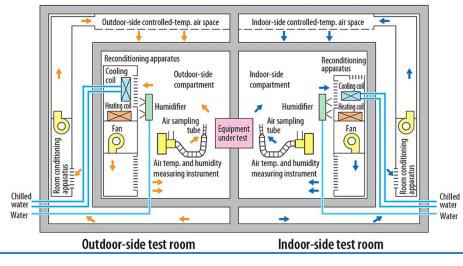
APF 7.6 : 697 kWh (18,815 JPY) (most efficient product)

difference: ▲216kWh (▲5,839 JPY)

※ 価格.com、エアコンスペック検索において、壁掛けで冷暖房、売れ筋ランキング上位600件を抽出。2018/9/27実施。 なお、機種ごとの市場価格は複数店舗の販売価格から最も安い価格を抽出している。また、一年以上前の型落ち品なども含まれるため、実際の市場価格よりも安いと考えられる。 図中点線は使用年数を10/15/20年、電気代を27円/kWh、買い替えに伴う工事費はゼロ、運転時間をJIS想定とした際に、現行TR基準値5.8の平均本体価格に対して投資回収できるライン。 なお、家庭用エアコンの平均使用年数の調査結果は13.5年。(内閣府「消費動向調査」より)

Air conditioner (Points to better analysis)

- Differences of the test methods and energy efficiency performance calculation for AC in the world (e.g. there are methods apply to neither ISO, US standard, nor EU standard)
- ② Importance of accurate evaluation methods which can evaluate actual AC use (e.g. partial output)
- 3 Reasonable and tighter regulation for AC efficiency in each country
- 4 Potential of decreasing energy consumption by using energy efficient ACs


Reference: Standard of energy efficiency of ACs in Japan

APF = Cooling Seasonal Total Load[kWh] + Heating Seasonal Total Load[kWh]

Cooling Seasonal Energy Consumption[kWh] + Heatng Seasonal Energy Consumption[kWh]

Calculation method of is based on JIS(Japan Industrial Standards) C 9612:2013 (based on ISO 5151:2010)

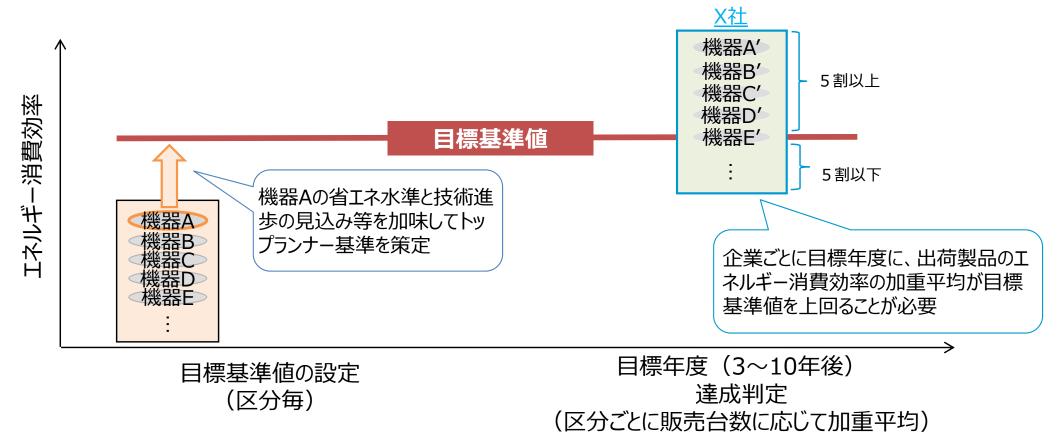
Example of air conditioner testing facility

(Source) Japan Air Conditioning and Refrigeration Testing Laboratory

Thank you

エアコンディショナーの 現状について

令和元年12月18日 資源エネルギー庁

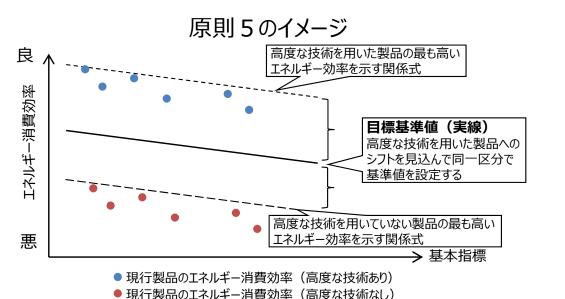

目次

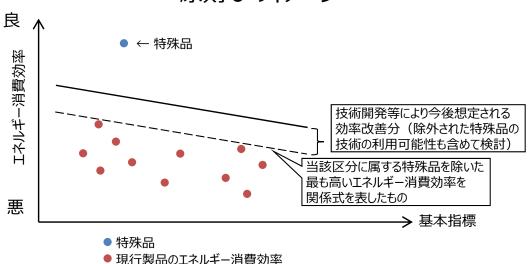
- 1. エアコンにおけるトップランナー規制について
 - 1 1. トップランナー制度による規制の概要 【参考】トップランナー基準値策定における考え方 【参考】エアコン能力別 効率の分布状況
 - 1 2. 対象となるエアコンディショナー 【参考】家庭用エアコンの種類
 - 1-3. 現行基準の区分
 - 1-4. 各区分におけるエネルギー消費効率の状況 【参考】現行基準の目標基準値
- 2. エアコンの市場動向等
 - 2-1. 出荷台数の推移 【参考】世帯あたり電気消費量 【参考】輸入台数の状況
 - 2-2. 普及率と世帯あたりの保有台数
 - 2-3. 平均使用年数および買替え理由
 - 2 4. APFの推移(製品ラインナップ)
 - 2 5. APFの比較(製品ラインナップ・出荷台数)
 - 2-6. 地域別の出荷構成比
 - 2-7. 家庭用エアコンの年間消費電力量
 - 2-8. ラインナップの推移
 - 2-9. 建材の外皮性能推移
 - 2-10. 建築物外皮性能と空調負荷想定 【参考】空調負荷の例
 - 2-11. 畳数目安
 - 2-12. 低負荷運転を考慮したAPFの評価
 - 2-13. 省エネ技術及び機能 【参考】省エネ技術及び機能の内容 【参考】製品の大型化
 - 2 1 4. ソフト省エネ 【参考】ソフト省エネの評価例 【参考】省エネ大賞受賞製品
- 参考. フロン対策の全体像
- 参考. トップランナー制度基準策定における基本的考え方

1-1. トップランナー制度による規制の概要

- エネルギーの使用の合理化等に関する法律(省エネ法)に基づき、これまで2004冷凍年度*、2007冷凍年度、2010年度、2012年度を目標年度とする基準を設定。製造事業者や輸入事業者に対して、目標年度までにエネルギー消費効率の目標達成を求めている。
- 未達成の製造事業者等には、相当程度のエネルギー消費効率の改善を行う必要がある場合に 勧告、公表、命令、罰則(100万円以下)の措置がとられる。

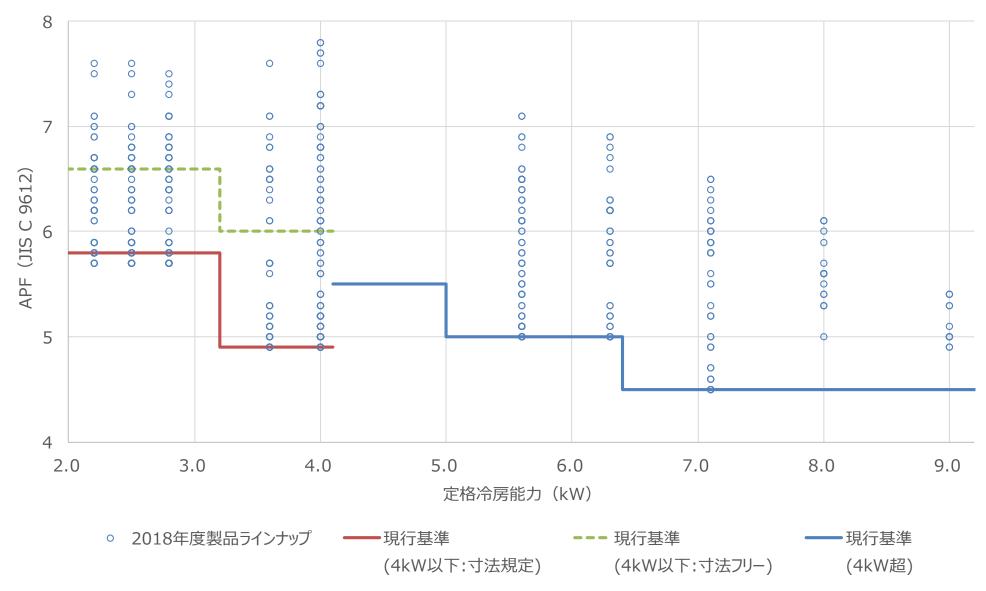
* 前年10月から当年9月におわる年度




(参考) トップランナー基準値策定における考え方

● 省エネルギー基準部会において「特定機器に係る性能向上に関する製造事業者等の判断基準の策定・改定に関する基本的考え方について」(総合資源エネルギー調査会第10回省エネルギー基準部会改定。以下「トップランナー原則」という。)を定めている。

原則5 高度な省エネ技術を用いているが故に、高額かつ高エネルギー消費効率である機器等については、区分を分けることも考え得るが、製造事業者等が積極的にエネルギー消費効率の優れた製品の販売を行えるよう、可能な限り同一の区分として扱うことが望ましい。


原則 6 1つの区分の目標基準値の設定にあたり、特殊品は除外する。ただし、技術開発等による効率改善分を検討する際に、除外された特殊品の技術の利用可能性も含めて検討する。

原則6のイメージ

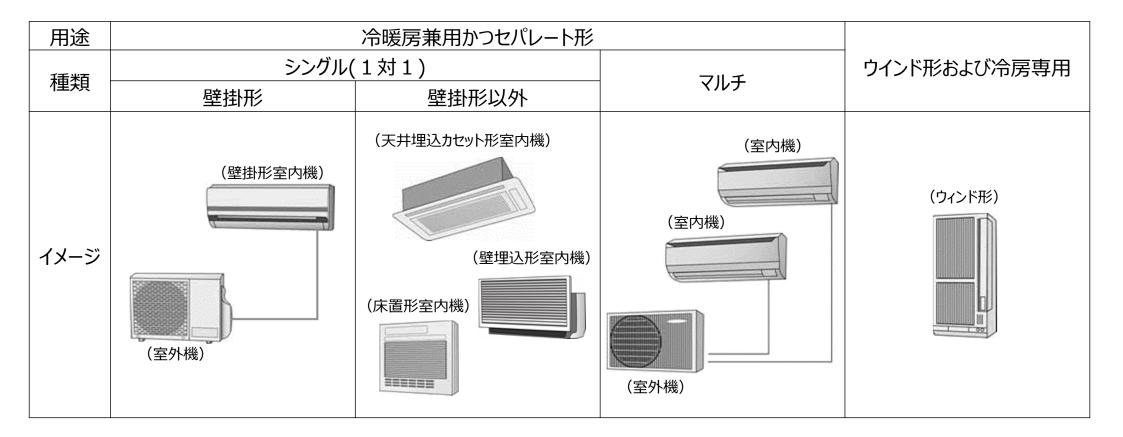
(参考) エアコン能力別 効率の分布状況

出所) 2018年度製品ラインナップ: (一社) 日本冷凍空調工業会 (APF: JIS C 9612:2013)

現行基準: (APF: JIS C 9612:2005)

1-2. 対象となるエアコンディショナー

● 家庭用のものについては、冷房能力が28kWを超えるもの、水冷式のもの、ウインド形および冷房専用のもの、電気以外のエネルギーを暖房の熱源とするもの、高気密・高断熱住宅用ダクト空調システム、ソーラー専用のもの、床暖房又は給湯の機能を有するものを除いている。


	種類		種類 2018年度 出荷台数 2010目標年度 (基準年度: 2005年度 告示施行: 2006年度 または2009年度)		2012目標年度 (基準年度: 2006年度 告示施行: 2009年度)
	・ シングル * ¹	壁掛形	943.5万台 (96.1%)	○*2	基準据え置き
豕 庭 用	豕 (1対1) 庭	壁掛形以外 (ハウジング)	10.3万台 (1.0%)	基準据え置き	0
/ 1 3	マ	ルチ	6.1万台 (0.6%)	基準据え置き	0

*1 冷暖房兼用かつセパレート形が規制対象。ウインド形および冷房専用は規制対象外。

*2 冷房能力4.0kW以下については2006年度告示、4.0kW超については2009年度告示。 出所)2018年度出荷台数: (一社)日本冷凍空調工業会 〇:規制対象

(参考)家庭用エアコンの種類

● セパレート形は1つの室外機に1つの室内機を接続するシングルタイプと、1つの室外機に2つ以上の室内機を接続するマルチタイプがある。シングルタイプで、壁掛形以外(ハウジングエアコン)の室内機の形態は、天井カセット形、壁埋込形、床置形がある。セパレート形以外の形態は、窓に取り付ける一体形であるウィンド形がある。

1-3. 現行基準の区分

● 現行のトップランナー制度における家庭用エアコンの基準ではユニットの形態、冷房能力、室内機の寸法タイプの3つの要素により区分が分けられていて、それぞれの組み合わせにより全13区分に分かれている。

ユニットの形態*1

- 直吹き形で壁掛け形のもの
- 直吹き形で壁掛け形以外のもの(マルチタイプのもののうち室内機の運転を個別制御するものを除く。)
- ▼ マルチタイプのものであって室内機の運転を 個別制御するもの

冷房能力*2

例えば直吹き形で壁掛け形のものでは、

- 3.2キロワット以下
- 3.2キロワット超4.0キロワット以下
- 4.0キロワット超5.0キロワット以下
- 5.0キロワット超6.3キロワット以下
- 6.3キロワット超28.0キロワット以下

室内機の 寸法タイプ*3

直吹き形で壁掛け形で、 冷房能力4.0キロワット 以下のものについて、

- 寸法規定タイプ
- 寸法フリータイプ

- *1「マルチタイプのもの」とは、1の室外機に2以上の室内機を接続するものをいう。
- *2 冷房能力は、JIS B 8615-1 又はB 8615-2 に規定する冷房能力の試験方法(温度条件はT1とする。)により測定した冷房能力の数値を指す。

X

*3 「室内機の寸法タイプ」とは、室内機の横幅寸法800ミリメートル以下かつ高さ295ミリメートル以下の機種を寸法規定タイプとし、それ以外を寸法フリータイプとする。

1-4. 各区分におけるエネルギー消費効率の状況

- 現行13区分のうち、壁掛形の製品の出荷が主流となっており、特に区分Aは全体の7割以上を占める。冷房能力別にみると2.2kWクラスが最も多く、全体の42%を占める。
- いずれの区分においても2016年度における平均基準達成率は100%を超えており、エネルギー 消費効率の改善率では区分全体で2006年度の実績4.5(平均冷房能力2.5kW)から5.8 (平均冷房能力3.3kW)になり、29%向上している。

各区分におけるエネルギー消費効率および出荷台数

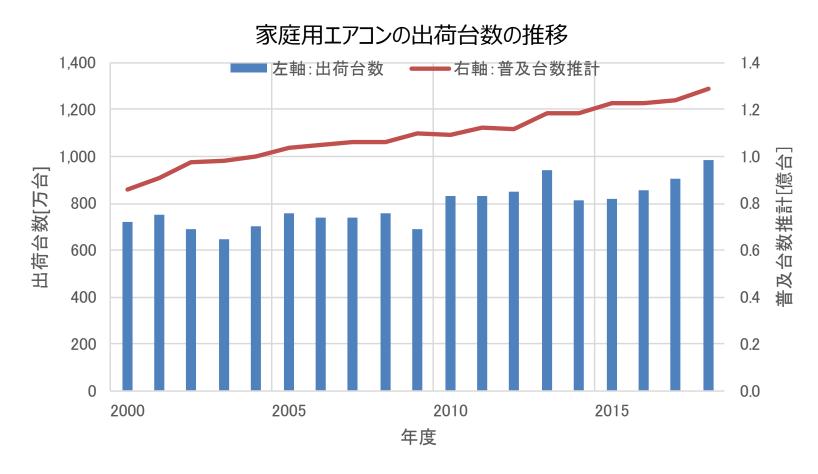
	区分		山 	AF	基準			
区分名	ユニット の形態	冷房能力	室内機の 寸法タイプ	出荷台数 (万台)	加重調和 平均値	目標 基準値	達成率	
Α		\sim 3.2kW	寸法規定	612.3 (73.8%)	5.89	5.8	102%	
В		, S.ZKVV	寸法フリー	*	6.89	6.6	104%	
С		\sim 4.0kW	寸法規定	116.7 (14.1%)	5.40	4.9	110%	
D	壁掛形	壁掛形	/~4.UKVV	寸法フリー	*	7.28	6.0	121%
Е			\sim 5.0kW	-	*	5.96	5.5	108%
F			\sim 6.3kW	-	68.8 (8.3%)	5.56	5.0	111%
G		\sim 28.0kW	-	16.0 (1.9%)	5.34	4.5	119%	
Н	P ☆ ↓+ π .⁄.	\sim 3.2kW	-	3.5 (0.4%)	5.39	5.2	104%	
I	壁掛形 以外	\sim 4.0kW	-	3.6 (0.4%)	4.98	4.8	104%	
J	场/I	\sim 28.0kW	-	2.3 (0.3%)	4.49	4.3	104%	
K	マルチタイプ	\sim 4.0kW	_	*	5.60	5.4	104%	
L		\sim 7.1kW	_	3.8 (0.5%)	5.60	5.4	104%	
М		~28.0kW	-	1.3 (0.2%)	5.47	5.4	101%	

冷房能力別 2018年度出荷台数

冷房能力 (kW)	出荷台数 (万台)	構成比
~ 2.2	412.7	42.0%
\sim 2.5	127.8	13.0%
~ 3.2	184.0	18.7%
~ 3.6	43.0	4.4%
\sim 4.0	101.0	10.3%
\sim 5.0	3.0	0.3%
\sim 5.6	68.7	7.0%
~ 6.3	19.2	2.0%
~ 7.1	14.6	1.5%
~ 8.0	4.5	0.5%
8.0超	2.8	0.3%
合計	981.5	100.0%

出所) (一社) 日本冷凍空調工業会

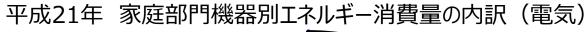
出所)「特定エネルギー消費機器の省エネ技術導入状況等に関する調査」の2016年度実績データより作成 *製造社数が2社以下の区分であり非公開とした。

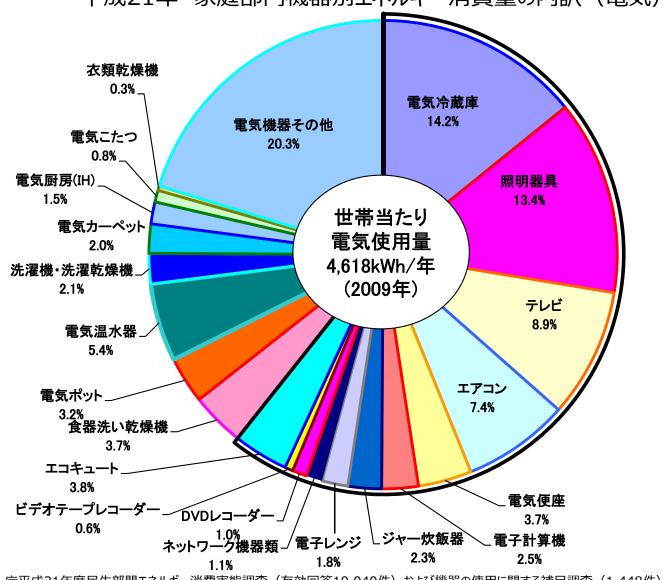

(参考) 現行基準の目標基準値

- 現行基準の目標基準値の算定は、以下の製品帯それぞれについて以下の通り設定された。
 - ① 直吹き壁掛けのもの:トップランナー値から、冷房能力4.0kW以下の寸法規定タイプについては効率改善会分を3%、寸法フリータイプについては4%、4.0kW超のものに関しては2%の改善(基準達成に取り組むための期間が4.0kW以下に比べて相対的に短いため)を見込んで設定。
 - ② 直吹き壁掛けのもの以外の分離形のもの:トップランナー値から3%の改善を見込んで設定。
 - ③ マルチタイプのもの:出荷台数が減少傾向であり、モデルサイクルが遅いことから、技術改善分は基本的には見込まないでトップランナー値を設定。ただし、目標基準値は区分間で矛盾がないように設定。

区分				トップラン		目標		
区分名	ユニット の形態	冷房能力	室内機の 寸法タイプ	ナー値	改善率	基準値	目標年度	
Α		\sim 3.2kW	寸法規定	5.65	3.0%	5.8		
В		, S.ZKVV	寸法フリー	6.40	4.0%	6.6	2010	
С		\sim 4.0kW	寸法規定	4.80	3.0% 4.9	4.9	年度	
D	壁掛形	Ě掛形	寸法フリー	5.80	4.0%	6.0		
Е			\sim 5.0kW	-	5.4	2.0%	5.5	
F		\sim 6.3kW	-	4.9	2.0%	5.0		
G		\sim 28.0kW	-	4.4	2.0%	4.5		
Н		\sim 3.2kW	-	5.0	3.0%	5.2	2012	
I	壁掛形以外	\sim 4.0kW	-	4.7	3.0%	4.8	2012	
J		\sim 28.0kW	-	4.2	3.0%	4.3	· 年度	
K		\sim 4.0kW	_	5.1	5.0%	5.4		
L	マルチタイプ	\sim 7.1kW	-	5.3	2.0%	5.4		
М		\sim 28.0kW	-	5.4	0.0%	5.4		

2-1. 出荷台数の推移


- 家庭用エアコンの2018年度の出荷台数は前年比8.4%増加で981万台であった。
- 普及台数は一定の前提のもと、2018年度時点で約1億3千万台と推計。



出所) 出荷台数:(一社)日本冷凍空調工業会 普及台数推計:世帯あたり保有台数を元に推計(「住民基本台帳に基づく人口、人口動態及び世帯数」、「国勢調査」、「消費動向調査」より作成)

(参考) 世帯あたり電気消費量

● 世帯あたり電気消費量に占めるエアコンの割合は7.4%。

出所)資源エネルギー庁平成21年度民生部門エネルギー消費実態調査(有効回答10,040件)および機器の使用に関する補足調査(1,448件)より日本エネルギー経済研究所が試算(注:エアコンは2009年の冷夏・暖冬の影響を含む)。

(参考) 輸入台数の状況

2018年度の家庭用エアコンの輸入台数は615.6万台であり、国内出荷台数981.5万台の63%を占める。

エアコンの輸入動向

	年度	2010	2011	2012	2013	2014	2015	2016	2017	2018
	世界計	457.5	581.0	562.9	640.5	534.7	456.1	525.2	581.7	615.6
輸入台数	中国	438.8	553.2	541.4	610.2	511.3	434.6	509.1	564.8	581.1
(万台)	タイ	18.0	26.8	20.5	30.0	22.9	20.8	15.3	15.6	32.8
	マレーシア	0.01	0.01	0.01	0.02	0.00	0.09	0.25	0.78	0.66

出所) 財務省 貿易統計、品目コード 8415.10.010、8415.81.019、8415.82.019を集計

国内出荷台数

	年度	2010	2011	2012	2013	2014	2015	2016	2017	2018
国内出荷台	台数(万台)	833.8	830.3	852.1	942.3	809.4	816.6	852.8	905.5	981.5

出所) (一社)日本冷凍空調工業会

2-2. 普及率と世帯あたりの保有台数

- 家庭用エアコンの普及率は、足元では90%強でほぼ横ばいである。一方で、エアコンを保有している家庭の1世帯あたりの保有台数は2018年度末時点で3.22台である。
- なお、総務省 住宅・土地統計調査では、2018年度の1住宅当たりの居住室数は4.42室である。

家庭用エアコンの普及率と保有台数(二人以上の世帯)

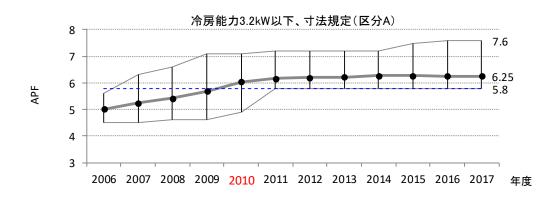
	普及率(%)	保有台数 (100世帯当たり台数)	1 世帯当たり 保有台数
1990年度末	68.1	126.5	1.86
1995年度末	77.2	166.1	2.15
2000年度末	86.2	217.4	2.52
2005年度末	88.2	255.3	2.89
2010年度末	89.2	259.9	2.91
2011年度末	90.0	268.0	2.98
2012年度末	90.5	264.3	2.92
2013年度末	90.6	275.8	3.04
2014年度末	91.2	274.7	3.01
2015年度末	92.5	283.7	3.07
2016年度末	91.1	281.7	3.09
2017年度末	91.1	281.3	3.09
2018年度末	90.6	291.8	3.22

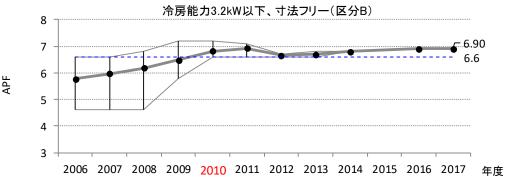
出所) 内閣府 消費動向調査 **14**

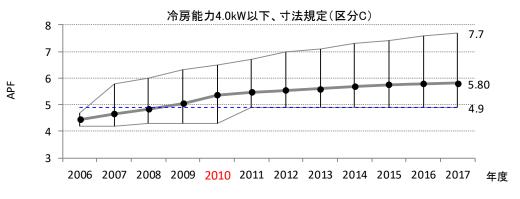
2-3. 平均使用年数および買替え理由

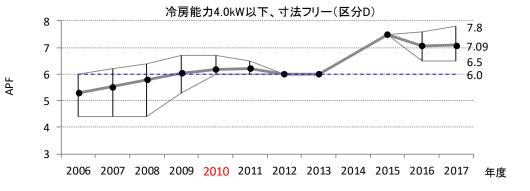
● 家庭用エアコンの平均使用年数は14.1年であり、買替え理由は故障が最も高く70.5%である。

家庭用エアコンの平均使用年数と買替え理由(二人以上の世帯)

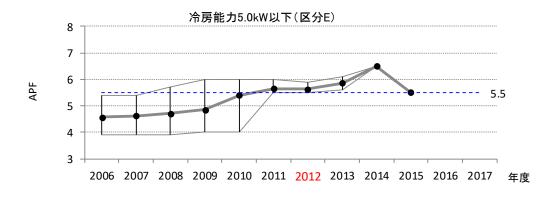

	平均使用年	買替え理由(%)					
	数(年)	故障	上位品目への 更新	住居変更	その他		
1990年度末	-	-	-	-	_		
1995年度末	12.7	61.3	13.5	10.3	14.9		
2000年度末	12.0	62.1	17.7	7.2	13.1		
2005年度末	10.2	61.8	12.8	15.8	9.6		
2010年度末	11.8	56.1	14.6	14.6	14.6		
2011年度末	11.9	59.3	14.1	11.5	15.1		
2012年度末	11.6	64.6	15.9	9.1	10.4		
2013年度末	10.6	53.3	11.8	16.9	18.0		
2014年度末	10.7	58.4	12.0	15.3	14.4		
2015年度末	12.3	58.6	15.4	10.7	15.4		
2016年度末	13.6	65.2	10.7	7.6	16.6		
2017年度末	13.5	70.2	10.6	4.7	14.5		
2018年度末	14.1	70.5	9.8	6.8	12.9		

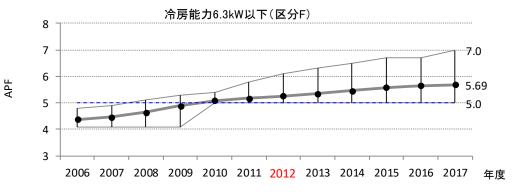

出所) 内閣府 消費動向調査

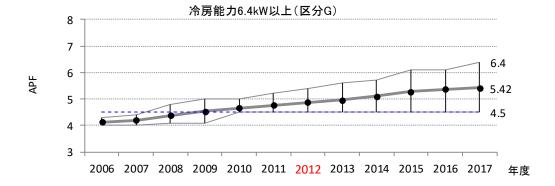

2-4. APFの推移(製品ラインナップ) ①


● 省エネ性能カタログより把握した、トップランナー制度における区分別のAPF最小値は、基準年である2010年度以降、全区分において目標値(点線)と同等又は上回っている。製品ラインナップでのAPF単純平均値(黒点)は、区分C、F、Gについて徐々に上昇している。

冷房能力4.0kW以下

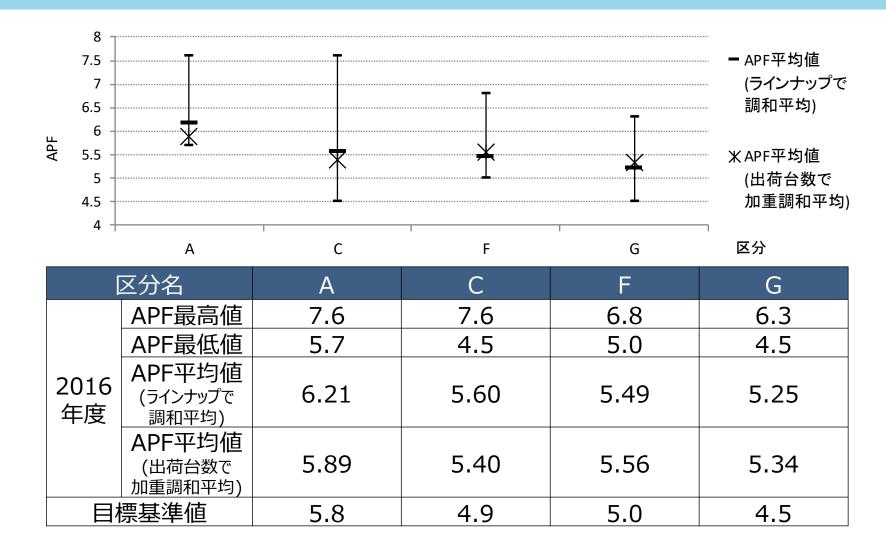






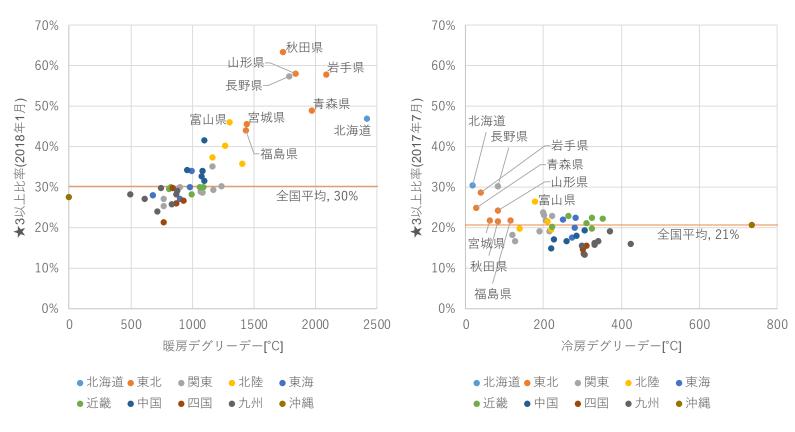
2-4. APFの推移(製品ラインナップ) ②

冷房能力4.0kW超



2-5. APFの比較(製品ラインナップ・出荷台数)

● 出荷台数の7割超を占める区分Aは、最も効率の高い機器のAPFが7.6、製品ラインナップの平均では6.21となっているが、出荷されている機器の加重調和平均値は5.86となっており、基準値5.8と同水準となっている。


2-6. 地域別の出荷構成比

- 北海道・東北は、主に使う暖房機器としてエアコンを使用する世帯は他エリアに比べて少ない。
- 他方で、冷房期に比べて暖房期には省エネ性能の高い機器が顕著に選ばれている。寒冷地向けのエアコンについてもその性能を評価すべきではないか。

最もよく使う暖房機器

20% 60% 80% 100% 北海道 東北 関東 38% 北陸 28% 東海 36% 沂畿 32% 中国 39% 四国 38% 九州 40% 沖縄 37% 全国 33% ■ エアコン 電気スト-ブ類 ■ 電気カーペット・こたつ ■ ガスストーブ類 灯油ストーブ類 ■セントラル暖房 ■ その他 ■暖房機器はない

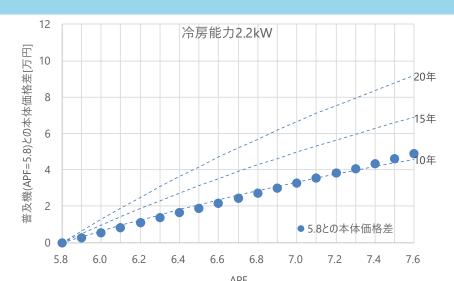
多段階評価別の出荷台数比率

出所) 販売台数比率:経済産業省「平成28年度IoTを活用した新ビジネス創出推進事業(ビッグデータを活用した新指標開発事業)」報告書 冷暖房デグリーデー*:気象庁の2017年度アメダス気象データより作成

出所)環境省「平成29年度 家庭部門のCO2排出実態統計調査」

^{*}冷房デグリーデー:日平均気温が24℃以上の日を冷房期間とし、この期間内の日平均気温と基準気温24℃との差を積分したもの。 暖房デグリーデー:日平均気温が10℃以下の日を暖房期間とし、この期間内の日平均気温と基準気温14℃との差を積分したもの。

2-7. 家庭用エアコンの年間消費電力量


- POS情報に基づき実際のエアコンの販売価格をAPF、型落ち年数、機能(空気洗浄等)、企業名で回帰分析を行ったところ、APF1.0改善する毎に2.2kW機は2.7万円の販売価格の上昇を確認。
- APFに応じて年間の目安消費電力量は異なる。冷房能力2.2kWにおける小売表示制度の年間の目安消費電力量から平均使用年数13.5年と仮定した場合、APF1.0あたり1,268kWhの目安電力消費量の差が生じ、金額に換算すると3.4万円となる。

<13.5年間の電力消費量・料金の例>

• APF 5.8 : 9,680kWh (261,495円相当) (基準)

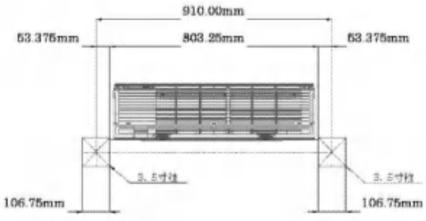
APF 7.6 : 7,398kWh (199,571円相当) (トップ)

差分 : ▲2,282kWh (▲61,924円相当) (トップ-基準)

2-8. ラインナップの推移

● 基準の設定当時は、寸法フリータイプの商品ライナップのシェアは8割程度を占めていたが、足元ではそのシェアが低下している。基準設定当時の寸法フリー(区分B,D)の比率は8割程度あったが、2017年度では2.1%および10%となった。

寸法規定と寸法フリーのラインナップ推移



寸法規定の概要

日本の標準的な木造住宅をモデルとし、<u>室内機の横幅寸法</u>800mm以下かつ高さ295mm以下の機種。根拠は以下。

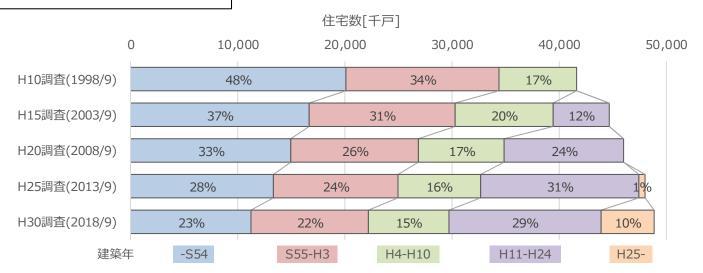
- ・室内機の横幅寸法
- ① 旧尺貫法による柱間のモジュール寸法: 910mm
- ② 3.5寸の柱の寸法: 106.75mm
- ③ エアコンと柱の最小間隔: 5mm
- (1)-(2)-(3) = 910mm-106.75mm-5m = 800mm
- ・室内機の高さ
 - ① 建築基準法施行令第21条の居室の天井の高さ、
- ② 標準的な窓の高さ、
- ③ エアコンと天井の最小間隔、
- (1)-(2)-(3)=2100mm-1800mm-5m=295mm

出所)「エアコンディショナー判断基準小委員会最終取りまとめ」(平成18年)参考資料

2-9. 建材の外皮性能推移

- 外皮性能の省エネ基準値は強化されている。
- 住宅ストックに占める建築年の新しい住宅の割合は増えている。

省エネ基準


省工之基準推移(6地域(旧IVb地域東京))

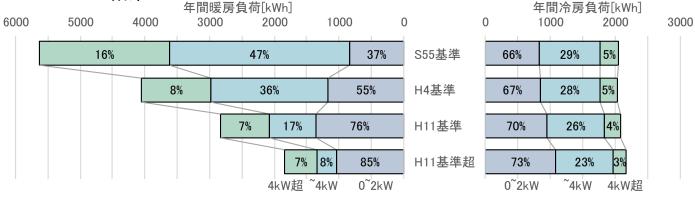
基準年	昭和55年基準	平成4年基準	平成11年基準	平成25年基準
外皮性能	Q値≦5.2W/㎡K	Q値≦4.2W/㎡K	Q値≦2.7W/㎡K	U _A 値≦0.87W/㎡K

熱損失係数: Q値[W/mk]=(建物全体の熱損失量[W/k])÷(床面積[m])

外皮平均熱貫流率: U_A値[W/m'K]= (建物全体の熱損失量[W/K]) ÷ (外皮面積[m']) 出所)「エネルギーの使用の合理化に関する建築主等及び特定建築物の所有者の判断の基準 |

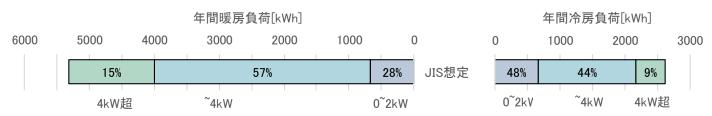
住宅ストックの建築年別分布推移

出所) 住宅・土地統計調査より作成 22


2-10. 建築物外皮性能と空調負荷想定①

- 外皮性能に応じた空調負荷想定について、年間の負荷帯ごとの空調負荷及び発生頻度を集計 (想定床面積:18.1畳)。
- 省エネ基準が新しいほど、年間総負荷が減少し、低負荷帯(図中0~2kW)の発生頻度が高い。
- JISで想定する住宅は、昭和55年の住宅基準と同水準となっている。

省エネ基準ごとの空調負荷想定

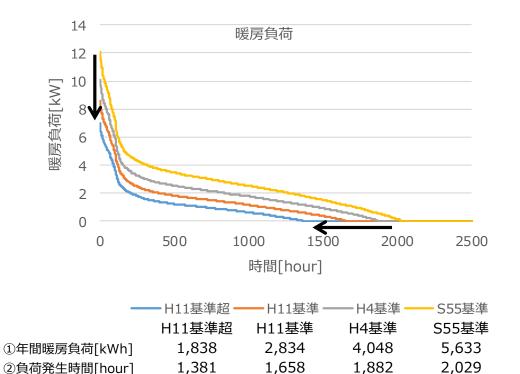

年間の負荷帯ごとの空調負荷[kWh]及び発生頻度[%]

<住宅基準ごとのシミュレーション結果>

出所) 建築研究所、「平成28年省エネルギー基準に準拠したエネルギー消費性能の評価に関する技術情報(住宅)」より作成。

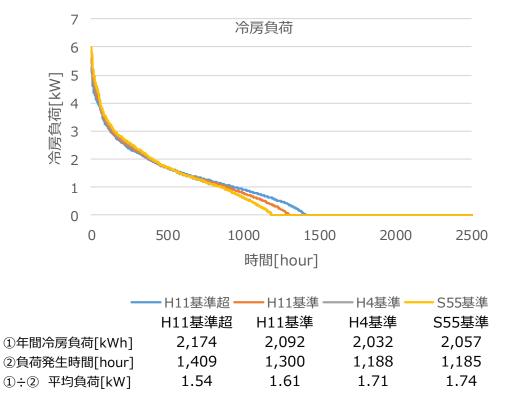
<JISで想定する空調負荷を冷房定格5.6kWで試算>

2-10. 建築物外皮性能と空調負荷想定②


- 外皮性能に応じた空調負荷想定について、年間の時間ごとの空調負荷(kW)を高い順に並べた 曲線(デュレーションカーブ)を作成。
- 暖房については外皮性能の差による変化が大きく、空調負荷が発生する時間は減少し、最大負 荷は減少している。

空調負荷のデュレーションカーブ

1.33

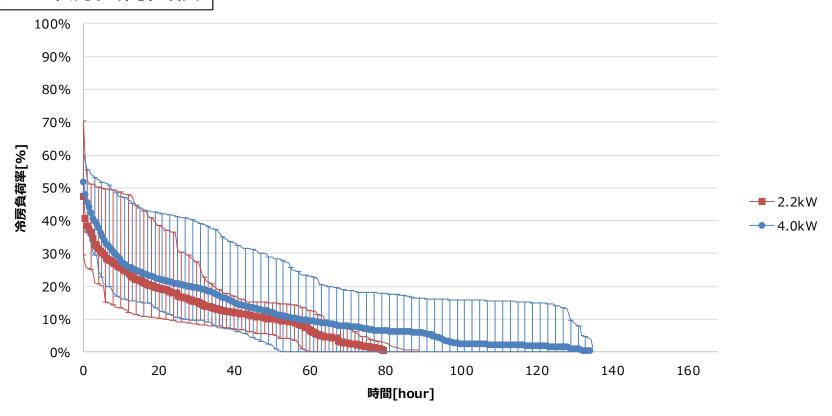

②負荷発生時間[hour]

①÷② 平均負荷[kW]

1,658

1.71

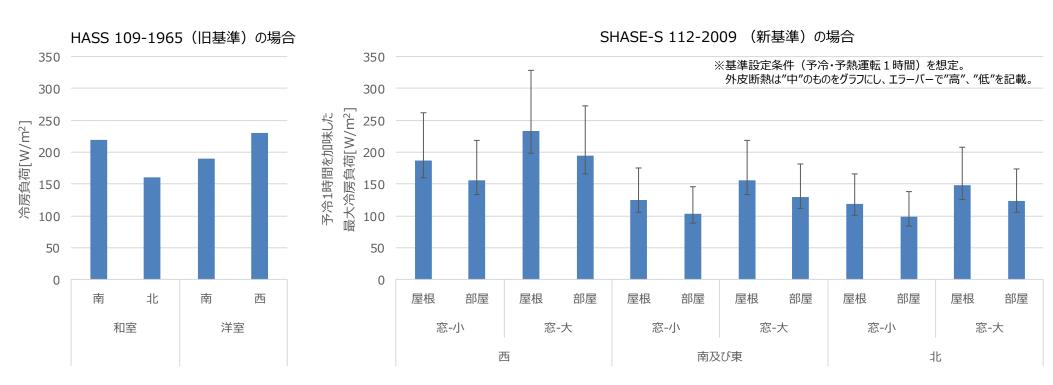
1,882


2.15

2.78

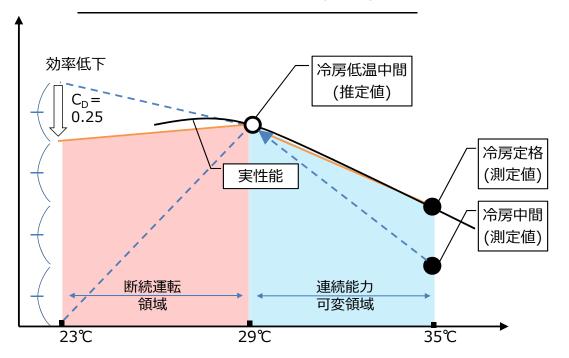
(参考) 空調負荷の例

- 設置されているエアコンの冷房能力に応じた冷房負荷実績について、夏期の一週間についての時間ごとの冷房空調負荷(kW)を高い順に並べた曲線(デュレーションカーブ)を作成。
- 冷房能力が2.2kW機が設置されている部屋と4.0kW機が設置されている部屋のそれぞれの平均値を比べると、4.0kW機に比べて2.2kW機の方が冷房負荷率は低い。また、2.2kW機は使用頻度も低い。


冷房能力と冷房負荷実績

2-11. 畳数目安

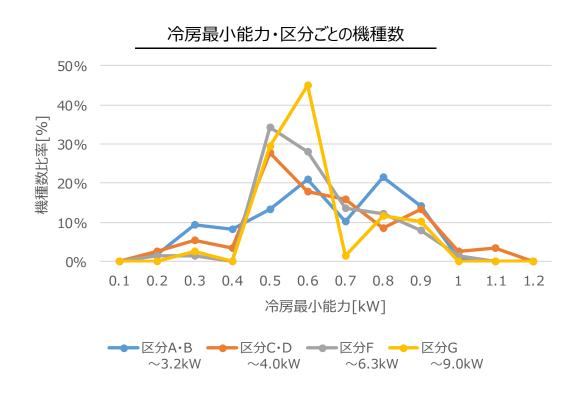
- 小売事業者表示制度の畳数目安で想定する世帯は、1965年の空気調和・衛生工学会規格 「HASS 109-1965(以下、旧基準という)」の戸建,南向き,和室である。
- 旧基準は、外気温が33℃の日でも室内を27℃にできることなどを基準設計の条件にしている。
- 同規格は2009年の「SHASE-S 112-2009(以下、新基準という)」で更新されており、新基準では予冷・予熱運転を一時間として基準を設計している。一般家庭で予冷・予熱運転をすることはまれであるため、予冷・予熱運転を15分にする補正係数1.74を規定されている負荷に乗じることとされている。


戸建における冷房負荷の例

2-12. 低負荷運転を考慮したAPFの評価①

- APFの計算方法はJIS C 9612:2013において、冷房定格、冷房中間、暖房定格、暖房中間、暖房低温の5点の測定値を用いて規定されている。
- 現行のJISでは最小運転能力については任意試験としているものの、試験は行わず効率低下係数を用いて計算することを定めている。

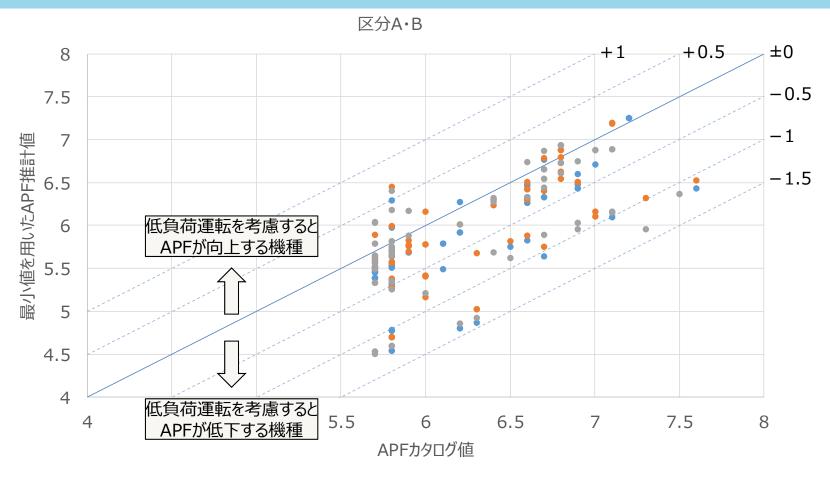
JIS C 9612のAPF計算(冷房)


APF計算に用いる試験

	外 気温	室内 温度	出力	JIS C 9612: 2013
冷房最小	35℃	27℃	最小	\bigcirc
冷房中間	35℃	27℃	中間	•
冷房定格	35℃	27℃	定格	•
冷房低温中間	29℃	27℃	中間	\bigcirc
暖房最小	7℃	20℃	最小	\circ
暖房中間	7℃	20℃	中間	•
暖房定格	7℃	20℃	定格	•
暖房低温最大	2℃	20℃	最大	•

● 必須試験/ ○ 任意試験

2-12. 低負荷運転を考慮したAPFの評価②


- 2018年度カタログに記載された機器604機について、最小運転能力に関するデータを冷房能力の大きさごとに集計。
- 冷房最小能力は各区分とも平均値が0.6kW程度と変わらないが、機器ごとの最小運転能力値 には差がある。

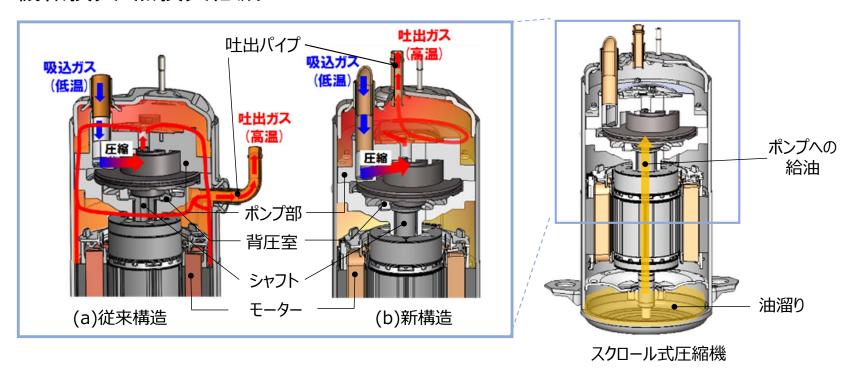
出所)使用データはエアコンブランド10社(コロナ、シャープ、ダイキン、長府、東芝、パナソニック、日立、富士通ゼネラル、三菱重工、三菱電機)の2018年度カタログに記載された機器。

2-12. 低負荷運転を考慮したAPFの評価③

- 最小能力を考慮した測定法であるISO 16358をもとに、カタログの冷暖房能力の最小値を消費電力の最小値で除した値(最小能力のCOP)を試算し、APFを推計。
- 最小値を用いたAPF推計値と現行JISのAPF(カタログ値)を比較すると、最小値を用いたAPF 推計値は機器ごとにばらつきがあり低下する傾向。

使用データは、エアコンブランド10社(コロナ、シャープ、ダイキン、長府、東芝、パナソニック、日立、富士通ゼネラル、三菱重工、三菱電機)の2018年度カタログに記載された機器。カタログに記載のない 冷房中間・暖房中間の測定値は推計し、期間消費電力量(暖房・冷房)およびΑΡFについて、中間能力推計値を用いた値とカタログ値の相対誤差が0.1%未満であることを確認。 29 JIS C 9612:2013と合わせるため、冷房空調負荷0%の外気温度t₀=23℃、暖房空調負荷100%の空調負荷Φ_{ful} (t₁₀₀)=0.82×(Φ_{ful+100}×1.25)とした。

2-13. 省エネ技術及び機能


家庭用エアコンにおける主な省エネ/増エネ技術・機能一覧

関連部		消費電力が減少する技術内容		
	新冷媒対応	環境規制を受け冷媒転換が進んだR32に対応した摺動部位のクリアランス最適化、冷凍機油の 最適化、給油経路の最適化などにより圧縮機効率を向上。		
圧縮機の	機械損失• 熱損失低減	ロータリ式圧縮機:摺動部位のクリアランス最適化やローラとベーンの一体化構造で効率を向上スクロール式圧縮機:設計圧縮比の最適化、固定スクロールラップと旋回スクロールラップのクリアランス最適化やラップ間の押し付け力の最適化、給油経路の最適化などによって圧縮機効率を向上		
性能向上技術	圧縮機モータ 効率	ブラシレスDCモータについて、 ステータコア:集中巻き、コイル占積率の増加、鉄心の分割などによりモータ効率を向上 ロータコア:希土類系磁石の採用、電磁鋼板の薄肉化などによりモータ効率を向上		
	圧縮機モータ 制御用電機品 効率	インバータ回路やコンバータ回路のスイッチング素子にSJ-MOSやSiCを採用することによる回路損失の低減、圧縮機モータとのマッチングや制御方法の最適化により回路効率を向上。		
送風系の 性能向上技術	高密度実装化やフラップ形状適正化など実装構造適正化により風路損失を低減、ファンの翼形状適正化やグリル・ 通風路形状の適正化により送風効率を向上、モータ駆動回路の高効率化によりファンモータ効率を向上。			
弁の 性能向上技術	主に冷房運転と暖房運転での冷媒経路を切り替える四方弁の熱伝導によって発生する損失について、弁本体やパイプの材質をステンレスを採用し熱伝導率を下げることで熱損失を低減。			
熱交換器の 性能向上技術	気側の伝熱促進	び熱交換器について、溝付き管による冷媒側の伝熱促進、フィンスリットの適正形状・配置による空 を、細径多パス化により伝熱管後流に生ずる死水域を減少および冷媒側圧力損失を低減。 の大型化により、前面面積拡大により通風抵抗を低減および伝熱面積拡大により伝熱性能を向上。		

(参考) 省エネ技術及び機能の内容①

圧縮機の性能向上技術

機械損失•熱損失低減

従来構造では、ポンプ部で圧縮された高温の冷媒は、圧縮機上部からモーターが配置された圧縮機下部へ循環した後、密閉容器の横に配置された吐出パイプからサイクルへ送られる構成となっていた。そのため、高温の冷媒がモーターを加熱することでモーターの損失が生じていた。更に、圧縮機下部の油溜まりから、シャフト内径の給油孔を通し、背圧室を介して圧縮室内へ油を供給しているため、圧縮室内へ高温の油が供給されることで冷媒の加熱による損失が生じていた。

新構造では、吐出パイプを圧縮機上部へ配置することで、圧縮された高温の冷媒が圧縮機下部へ行き難い構造とし、モーターおよび圧縮室内の冷媒の加熱による損失を低減している。

(参考) 省エネ技術及び機能の内容②

圧縮機の性能向上技術

圧縮機モータ効率

	基準	А	
固定子			
回転子			
特徴 (変更点)	分布巻 フェライト磁石	集中巻 ネオジム磁石	

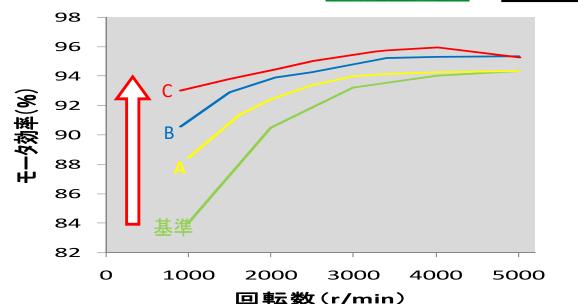
	В	С
固定子		March Control
回転子		
特徴 (変更点)	スロット絶縁 q軸鉄心かット	ティース形状 巻数アップ スリット配置

モータ設計では低出力域での効率向上を図るために以下を実施してきた。

・集中巻の採用

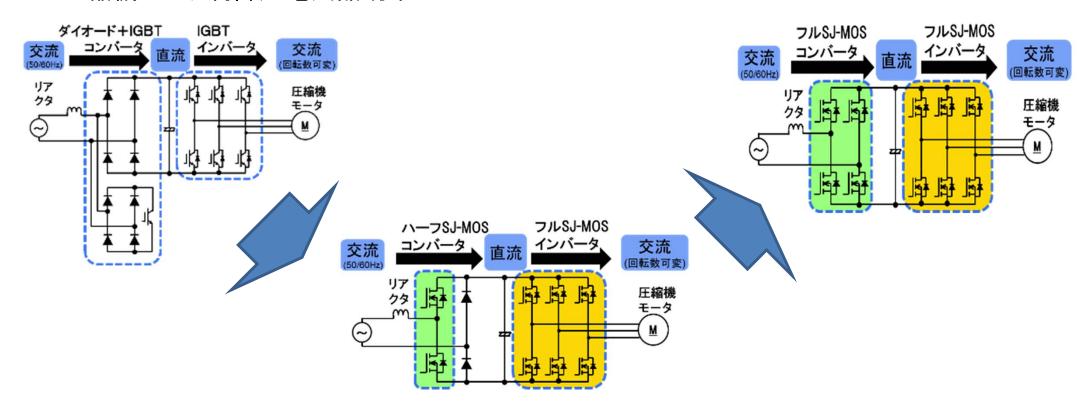
- ・ネオジム磁石の採用
- ・磁気回路(ティース先端形状)の見直し ・電機子巻線の巻数変更

【分布巻】


- ・巻線の作る磁界は正弦波状
- ⇒ 電磁加振力成分が小さい
- ・巻線係数を大きくできる
- ⇒ 磁石使用量の低減が可能

【集中巻】

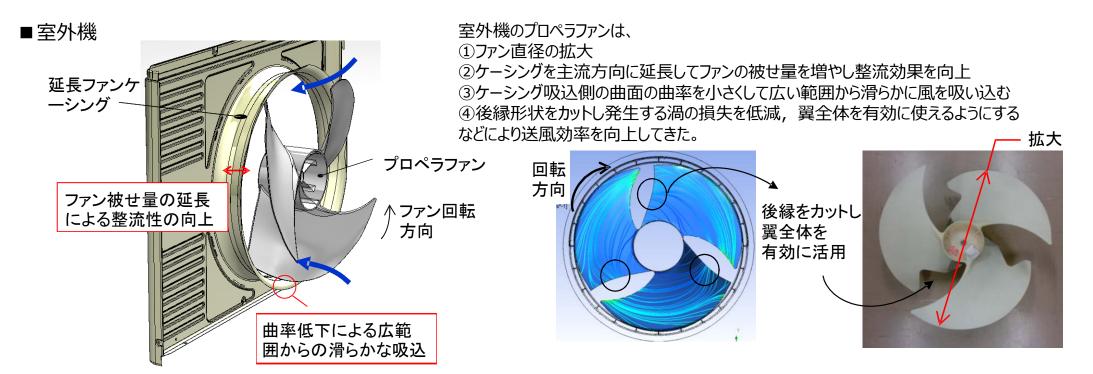
- ・巻線端部が交差しないため、 端部の短尺化が可能
 - ⇒ 巻線使用量を削減し、銅損低減
 - ⇒ 高効率化


出所) (一社)日本冷凍空調工業会

32

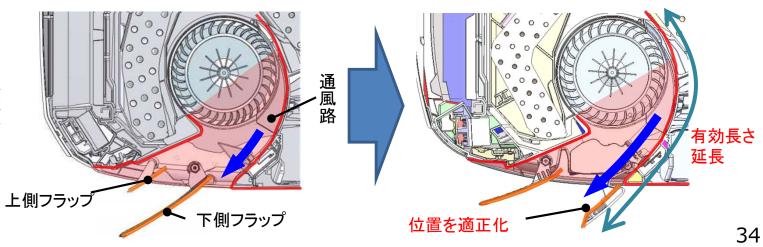
(参考) 省エネ技術及び機能の内容③

● 圧縮機の性能向上技術


圧縮機モータ制御用電気品効率

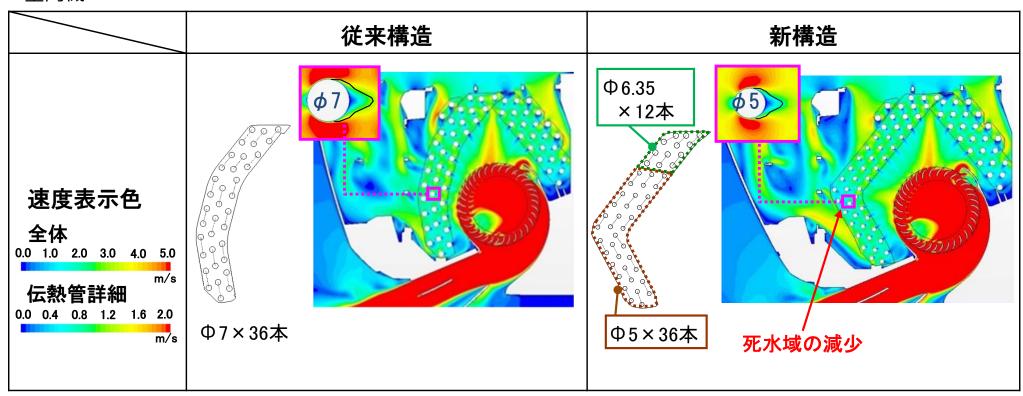
コンバータ回路、および、消費電力の大部分を占める圧縮機駆動部のインバータ回路のスイッチング素子に、SJ-MOS(Super Junction Metal Oxide Semiconductor Field Effect Transistor)を採用することで、回路効率を向上させている。SJ-MOS は高速スイッチング性と低いオン抵抗を両立したスーパージャンクション構造のトランジスタであり、これを搭載したドライブシステムはダイオードや従来のIGBT(Insulated gate Bipolar Transistor)に比べ、低速運転時における素子の電圧降下が小さく、素子の電力損失を低くできる特長を持つため、低速での運転時間が長いエアコンのAPF性能に有効である。

(参考) 省エネ技術及び機能の内容4


送風系の性能向上技術

■室内機

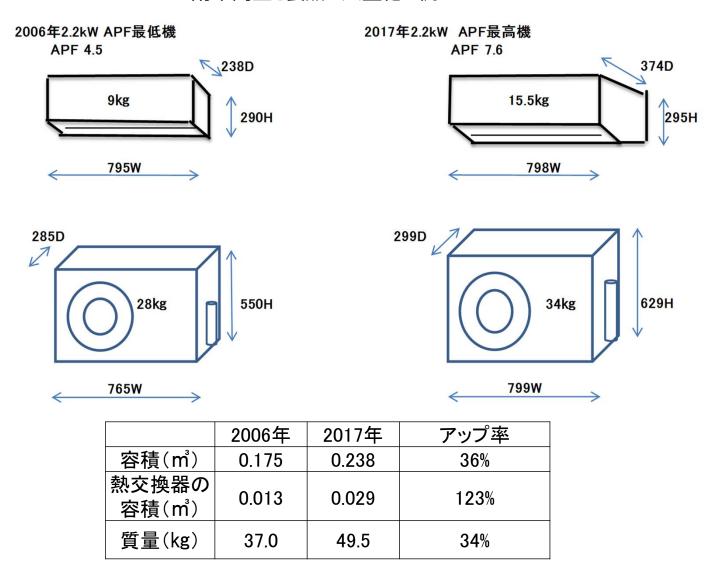
室内機に用いられている貫流ファンを大口径 化することで、ファン入力を低減してきた。


更に、上下方向の風向をコントロールする吐出フラップは、通風路の延長線上に沿わせる位置に配置し、吐出部開口面積を拡大して流路損失の低減を図るとともに、吐出空気の静圧を回収する『ディフューザー効果』で送風機動力の低減を実現した。

(参考) 省エネ技術及び機能の内容⑤

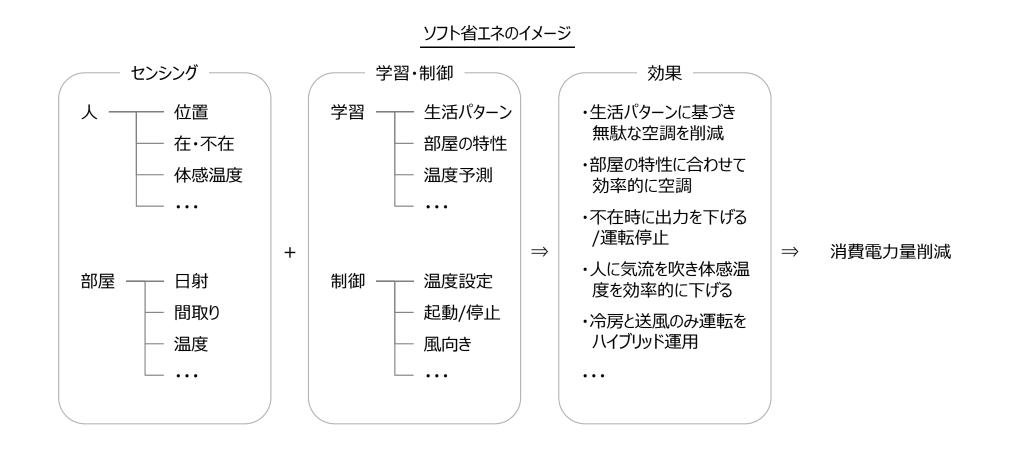
熱交換器の性能向上技術

■室内機



高密度実装技術によって熱交換器を可能な限り拡大することで、前面面積拡大による通風抵抗低減と伝熱面積拡大による伝熱性能を向上させてきた。 更に、伝熱管の細径化により伝熱管後流に生ずる死水域を減少させ伝熱性能を向上させるともに、多パス化による冷媒側圧力損失を低減させてきた。

(参考) 製品の大型化


● 熱交換器を大型化することにより、圧縮比を軽減して省エネルギー化を実現。

効率向上と製品の大型化の例

2-14. ソフト省エネ

- 圧縮機や熱交換器などのハード側による省エネ性能技術向上の他に、センシング技術などを用いたソフト側による省エネ性能向上技術がある。
- ソフト側の省エネ技術は測定規格や標準化はされておらず、現行のAPF評価には含まれないものの、実使用環境下においては省エネに資すると考えられる。

(参考) ソフト省エネの評価例①

● カタログでは、各社独自の測定条件におけるソフト省エネの評価結果を定量的に記載している。

①学習・予測

機種・機能	機能概要	評価条件	評価指標	評価結果	省エネ率 冷/暖		
①学習や予測 を主と	①学習や予測 を主とした機能の評価例						
シャープ AY-J40X2 「クラウドAI」	かられ」で子習し、立ち上り前面や、 外出前に温度をゆるめる温度シフト 制御で劣エネ		一日(6.5時 間)の消費電力	「COCORO AIR制御」切 (冷房1,451Wh) 「COCORO AIR制御」入 (冷房1,203Wh)	17.1% / -%		
パナソニック CS-408CX2 「おへや学習機能」	部屋の負荷条件を解析・学習、部屋の特性に応じてムダな立ち上げパワーをカットし節電する「おへや学習機能」。	試験室:14畳、外気温:冷房35℃、設定温度:冷 房27℃。低負荷環境を学習後。	設定温度到達	「エコナビ」切 (冷房205Wh) 「エコナビ」入 (冷房184Wh)	10.2% / -%		
日立 RAS-XJ40J2 「AIごれっきり運転」	画像・温湿度・近赤外線カメラを搭載した「くらしカメラAI」で体感温度変化予測や部屋環境を検知した	試験室:洋室14畳、外気温:暖房2℃、設定温度:暖房23℃、風速自動。在室人数は3人、室内機から2.5m離れた時点で3.0メッツ相当。日射量が多い日中で、3人が近い範囲に存在し、3人の位置と日が差し込んでいるエリアが一致し、人の周囲温度が設定温度より高めである状態を想定。	安定時1時間 の消費電力量	「AIこれっきり」切 (暖房573Wh) 「AIこれっきり」入 (暖房326Wh)	-% / 43.1%		
三菱電機 MSZ-FZ6318S 「先読み運転」	線センサ)による体感温度変化予	夏期/冬期をモデルとし変動。設定温度:冷房27℃/暖	設定温度到達 後4時間の消 費電力量	「先読み運転」切 (冷房670Wh/暖房1,115Wh) 「先読み運転」入 (冷房649Wh/暖房1,049Wh)	3.1% / 5.9%		

出所) 2018年度各社カタログより 38

(参考) ソフト省エネの評価例②

②人のセンシング、③不在時オフ

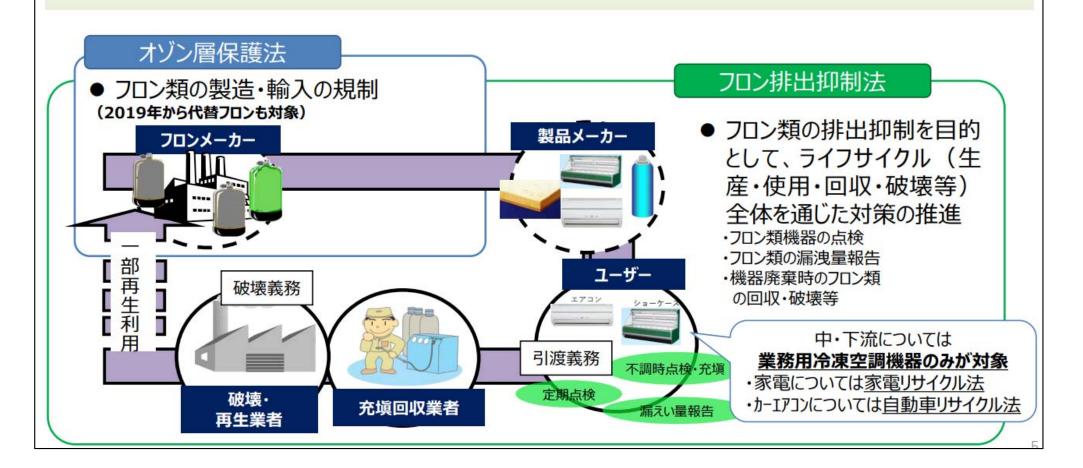
機種・機能	機能概要	評価条件	評価指標	評価結果	省工ネ率 冷/暖		
②人のセンシング を主	②人のセンシングを主とした機能の評価例						
ダイキン RXシリーズ 「快適エコ自動運転」	人感センサーで人のいる場所に集中的に気流を吹き分け、快適と省エネを両立して自動運転する「快適エコ自動運転」。	集合住宅(鉄筋)洋室、南向き中間階、換気回数0.5回/h、天井高さ2.4m/部屋容積55.4m相当。快適工コ自動運転風向上下自動時の設定温湿度:冷房28℃,50%/暖房22℃,50%。冷暖房運転の設定温度:冷房26℃/暖房25℃。	実測データに基 ブき室内温度 安定時の16時 間運転の消費 電力量試算値	「冷暖房運転」 (冷房10.79kWh/暖房6.71kWh) 「快適工コ自動運転風向上下自動時」 (冷房7.78kWh/暖房6.17kWh)	27.9% / 8.0%		
東芝 RAS-E406DRH 「ecoモード」	人サーチセンサーで人の位置を把握 し運転する「ecoモード」。	試験室:14畳、外気温:冷房33℃/暖房7℃、設定 温度:冷房26℃/暖房23℃、風量自動、居住者がエ アコンから右方向に1名位置。	安定時1時間 の消費電力量	「通常冷房/暖房運転」 (冷房77Wh/暖房191Wh) 「ecoモード運転(風あて時)」 (冷房54Wh/暖房158Wh)	29.9% / 17.3%		
三菱重工 SRK40SW2 「エコ運転」		試験室:洋室16畳、外気温:冷房35℃/暖房7℃、 通常運転時の設定温度:冷房28℃/暖房20℃、風量 自動。活動量:冷房 1メッツ相当/暖房 2メッツ相当。	安定時1時間 の消費電力量	「通常運転時」 (冷房303Wh/暖房357Wh) 「エコ運転時」 (冷房195Wh/暖房181Wh)	35.6% / 49.3%		
③不在時オフ を主と	した機能の評価例						
東芝 RAS-E406DRH 「不在節電機能」		試験室:14畳、外気温:冷房33℃/暖房7℃、設定温度:冷房26℃/暖房23℃、風量自動。	安定時1時間	「人がいる時」 (冷房72Wh/暖房277Wh) 「人がいない時」 (冷房50Wh/暖房57Wh)	30.6% / 79.4%		
パナソニック CS-408CX2 「不在省エネ運転」		試験室:14畳、外気温:冷房35℃/暖房2℃、設定体感温度:冷房25℃/暖房25℃。	安定時1時間 の消費電力量	「連続運転」 (冷房297Wh/暖房536Wh) 「不在省エネ運転」 (冷房238Wh/暖房429Wh)	19.9% / 20.0%		
富士通ゼネラル AS-X40H2 「不在ECO」	人感センサーで在室か検知し自動 で節電運転への切り替えや運転の 停止・再開をする「不在ECO」。	試験室:14畳、外気温:冷房35℃/暖房7℃、設定温度:冷房28℃/暖房20℃、風量強風。	安定時1時間 の消費電力量	「不在ECO」オートセーブ機能切 (冷房200Wh/暖房208Wh) 「不在ECO」オートセーブ機能入 (冷房145Wh/暖房111Wh)	27.5% / 46.6%		
三菱重工 SRK40SW2 「不在時ひかえめ運転」		試験室:洋室16畳、外気温:冷房35℃/暖房7℃、 風量自動。	安定時1時間 の消費電力量	「人感センサー」切 (冷房473Wh/暖房445Wh) 「人感センサー」入 (冷房221Wh/暖房355Wh)	53.3% / 20.2%		

出所) 2018年度各社カタログより

(参考) ソフト省エネの評価例③

④部屋のセンシング、⑤送風、⑥自動掃除

機種・機能	機能概要	評価条件	評価指標	評価結果	省エネ率 冷/暖
④部屋のセンシング	を主とした機能の評価例				
シャープ AY-J40X2 「エコ自動運転」	日差しの変化などを見分けて、自 動で運転効率を優先した省エネ運 転をする「エコ自動運転」。	試験室:14畳フローリング、外気温:冷房35℃/暖房7℃、エコ自動運転の設定:同一体感温度、通常運転の設定温度:冷房26℃/暖房23℃。日射:冷房なし/暖房あり。	運転開始から1 時間後の積算 電力量	「通常冷房/暖房運転」 (冷房921Wh/暖房2195Wh) 「工コ自動運転」 (冷房586Wh/暖房1753Wh)	36.4% / 20.1%
パナソニック CS-408CX2 「ひとものセンサー」	人・家具・間取りなどを高精度で見分ける「ひとものセンサー」で温冷感を解析し、快適性と節電効果を高める。	試験室:14畳、外気温:冷房35℃/暖房2℃、設定体感温度:冷房25℃/暖房25℃。着衣量:冷房約0.3clo/暖房約1.5clo、日射:冷房_弱くなった場合/暖房_入っている場合。エアコンの設置位置から対面上の1エリア(遠距離エリア)に人が存在。	安定時1時間 の消費電力量	「エコナビ」切・「センサー」切 (冷房425Wh/暖房1,195Wh) 「エコナビ」入・センサー風あて (冷房191Wh/暖房354Wh)	55.1% / 70.4%
富士通ゼネラル AS-X40H2 「3D温度センサー」	「3D温度センサー」で計測した立体 的な部屋温度とハイブリッド気流に よって、運転のムダを省き、快適性と 省エネ性を向上。	山駅至:14宜、介风流:7万500人 15万/ C、政化 设度、全定26℃/展定25℃ 周島白動 周点全定/	安定時1時間 の消費電力量	「3D温度センサー」切 (冷房190Wh/暖房354Wh) 「3D温度センサー」入 (冷房138Wh/暖房244Wh)	27.4% / 31.1%
⑤送風とのハイブリッド	を主とした機能の評価例				
三菱重工 SRK40SW2 「快適自動運転」	温度・湿度センサーでお部屋の状況をチェックしPMVや体感温度に合わせて自動で送風に切り替える「快適自動運転」。	試験室:洋室16畳、外気温:冷房35℃/暖房7℃、 風量自動。	安定時1時間 の消費電力量	「通常運転時」 (冷房473Wh/暖房340Wh) 「快適自動運転時」 (冷房221Wh/暖房247Wh)	53.3% / 27.4%
三菱電機 MSZ-FZ6318S 「ハイブリッド運転」		試験室:20畳、外気温:冷房30℃/暖房7℃、設定体感温度:冷房28℃/暖房23℃。	安定時1時間 の消費電力量	「ハイブリッド冷房/暖房」切 (冷房227Wh/暖房451Wh) 「ハイブリッド冷房/暖房」入 (冷房26Wh/暖房386Wh)	88.5% / 14.4%
⑥自動掃除 を主とし	た機能の評価例				
東芝 RAS-E406DRH 「自動お掃除」	エアコン内部の「自動お掃除」で省 エネ性能をキープ。	JRA4046-2004 に準拠した運転条件	1年間の期間 消費電力量の 算出値	「内部お掃除」なし (1,247kWh) 「内部お掃除」あり・1年2回フィルター 掃除(1,120kWh)	10.2%


出所) 2018年度各社カタログより 40

(参考) 省エネ大賞受賞製品

年度	社名	製品名	技術
平成29年度	三菱電機	家庭用エアコン「霧ヶ峰FZシリーズ」	圧縮機の低負荷から高負荷の性能向上住宅の断熱性学習による過剰動作抑制
平成28年度	パナソニック	家庭用ルームエアコン「ダブル温度・同時吹き分け気流システム搭載」WXシリーズ	可変圧力弁による二温度熱交換と二気流制御温度センサーによる体感温度差を加味した空調制御
平成28年度	ダイキン工業	床暖房接続可能な住宅用マル チエアコン	 床暖房との連動制御 複数のエアコンを一台のヒートポンプ室外機に接続
平成28年度	日立ジョンソンコント ロールズ空調	ルームエアコン「ステンレス・クリー ン 白くまくん」	スクロール圧縮機による室内機のコンパクト化熱画像センサーでの個人識別による在室時間把握で過剰動作抑制
平成27年度	三菱電機	家庭用エアコン「霧ヶ峰FZ/FZVシリーズ」	・送風機への高効率プロペラファンの採用・熱交換器レイアウトの見直し
平成27年度	パナソニック	家庭用ルームエアコン「エコナビ 搭載エアコン WXシリーズ」	・熱画像センサーを用いた温冷感検出技術・圧縮機排熱の蓄熱による霜取への活用・室内機ファンの送風効率改善・室外機の可変冷媒パス技術による熱交換器効率の向上・プロペラファンの大型化と羽根枚数の増加による送風効率の向上
平成26年度	日立アプライアンス	ルームエアコン「ステンレス・クリー ン白くまくん」	大径化の波形貫流ファンや室外機のプロペラファンの形状最適化カメラ機能の採用による送風効率改善3分割した前側フラップの独立制御
平成26年度	三菱電機	家庭用エアコン「霧ヶ峰Zシリーズ」	マルチレベルコンバータの採用赤外線センサーによる全方位の温度検出フラップ等の改良による真横吹き気流の実現

(参考) フロン対策の全体像①

- **オゾン層保護法**: モントリオール議定書に基づくフロン類の生産量・消費量の削減のため、**フ**ロン類の製造及び輸入の規制措置を講ずる。
- **フロン排出抑制法**: フロン類の排出抑制を目的として、業務用冷凍空調機器からの廃棄時のフロン類の引渡義務など、**フロン類のライフサイクル全般にわたる排出抑制対策**を規定。

(参考) フロン対策の全体像②

改正オゾン層保護法の運用の考え方

- キガリ改正に基づき、国全体の代替フロン生産量、消費量それぞれの限度について、 2019年以降、段階的に切り下げていくこととなる。
- 各事業者に対する製造量、輸入量の配分の仕組みは、実績を踏まえた形を基本としつの、国全体での代替フロン削減に寄与する画期的に温室効果の低い冷媒の製造等に対し、インセンティブを付与するものとする。
- ◆ 特に厳しくなる2029年以降の削減義務(2,145万CO2-t)を達成すべく、グリーン冷媒及びそれを活用した製品の開発・導入を計画的に推進していく。
- グリーン冷媒技術を世界に先駆けて開発し、その成果を他国に波及させていくことにより、世界全体のフロン対策に貢献していく。

(参考) フロン対策の全体像③

(参考) 代替フロン冷媒及びグリーン冷媒の導入状況

領域	分野	現行の代替フロン冷媒 (GWP)	代替フロン冷媒に代わる グリーン冷媒(GWP)		
①代替が	家庭用冷凍冷蔵庫	(HFC-134a (1,430))	イソブタン(4) ※新規出荷		
進んでい る、又は 進む見通	自動販売機	(HFC-134a(1,430)) (HFC-407C(1,770))	CO2(1) イソブタン(4) HFO-1234yf(1)		
	カーエアコン	HFC-134a (1,430)	HFO-1234yf (1) ※今後代替 が進む見通し。		
②代替候	超低温冷凍冷蔵庫	HFC-23 (14,800)	空気 (0)		
補はあるが、普及	大型業務用冷凍冷蔵庫	HFC-404A (3,920)	アンモニア (1)、CO2 (1)		
には課題	中型業務用冷凍冷蔵庫 (別置型ショーケース)	HFC-404A (3,920) HFC-410A (2,090)	CO2 (1)		
③代替候 補を検討	小型業務用冷凍冷蔵庫	HFC-404A (3,920) HFC-410A (2,090)			
中	業務用エアコン	HFC-410A (2,090) HFC-32 (675)	(代替冷媒候補を検討中)		
	家庭用エアコン	HFC-32 (675)	」 + 18 へ からのぶルタン組みなみままままた)		

[※]GWP・・・地球温暖化係数(CO2を1とした場合の温暖化影響の強さを表す値)

HFC-404A・・・HFC-125、143a、134aの混合冷媒(44:52:4)

HFC-410A···HFC-32、125の混合冷媒(1:1)

[※]HFC-407C・・・HFC-32、125、134aの混合冷媒(23:25:52)

(参考) トップランナー制度基準策定における基本的考え方①

- 原則1.対象範囲は、一般的な構造、用途、使用形態を勘案して定めるものとし、①特殊な用途に使用される機種、②技術的な測定方法、評価方法が確立してない機種であり、目標基準を定めること自体が困難である機種、③市場での使用割合が極度に小さい機種等は対象範囲から除外する。
- 原則2. 特定機器はある指標に基づき区分を設定することになるが、その指標(基本指標)は、 エネルギー消費効率との関係の深い物理量、機能等の指標とし、消費者が製品を選択する際に 基準とするもの(消費者ニーズの代表性を有するもの)等を勘案して定める。
- 原則 3.目標基準値は、同一のエネルギー消費効率を目指すことが可能かつ適切な基本指標の区分ごとに、1つの数値又は関係式により定める。
- 原則4.区分設定にあたり、付加的機能は、原則捨象することとする。但し、ある機能のない製品を目標基準値として設定した場合、その機能をもつ製品が市場ニーズが高いと考えられるにもかかわらず、目標基準値を満たせなくなることから、市場から撤退する蓋然性が高い場合には、別の区分とすることができる。
- 原則5. 高度な省エネ技術を用いているが故に、高額かつ高エネルギー消費効率である機器については、区分を分けることも考え得るが、製造事業者等が積極的にエネルギー消費効率の優れた製品の販売を行えるよう、可能な限り同一の区分として扱うことが望ましい。

^{*「}特定機器に係る性能向上に関する製造事業者等の判断基準の策定・改定に関する基本的考え方について」(第10回総合資源エネルギー調査会省エネルギー基準部会平成19年6月19日改訂)の原則

(参考) トップランナー制度基準策定における基本的考え方②

- 原則 6. 1つの区分の目標基準値の設定に当たり、特殊品は除外する。但し、技術開発等による効率改善分を検討する際に、除外された特殊品の技術の利用可能性も含めて検討する。
- 原則 7. 家電製品、OA機器においては、待機時消費電力の削減に配慮した目標基準とすること。
- 原則8.目標年度は、特定機器の製品開発期間、将来技術進展の見通し等を勘案した上で、 3~10年を目処に機器毎に定める。
- 原則9.目標年度において、目標基準値に達成しているかどうかの判断は、製造事業者毎に、 区分毎に加重平均方式により行うこととする。
- 原則10. 測定方法は、内外の規格に配慮し、規格が存在する場合には、可能な限りこれらとの整合性が確保されたものとすることが適当である。また、測定方法に関する規格が存在しない場合には、機器の使用実態を踏まえた、具体的、客観的、定量的な測定方法を採用することが適当である。

^{*「}特定機器に係る性能向上に関する製造事業者等の判断基準の策定・改定に関する基本的考え方について」(第10回総合資源エネルギー調査会省エネルギー基準部会平成19年6月19日改訂)の原則