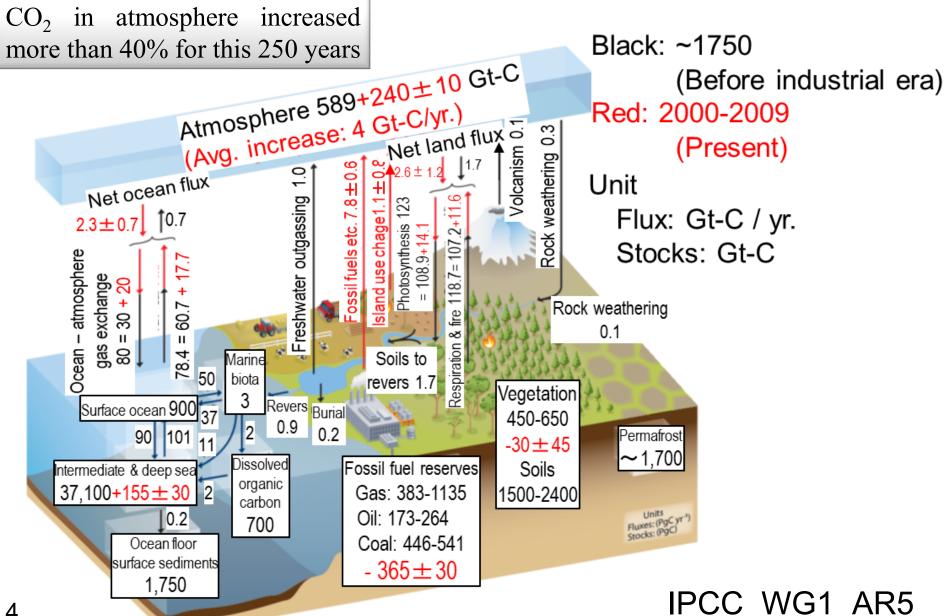
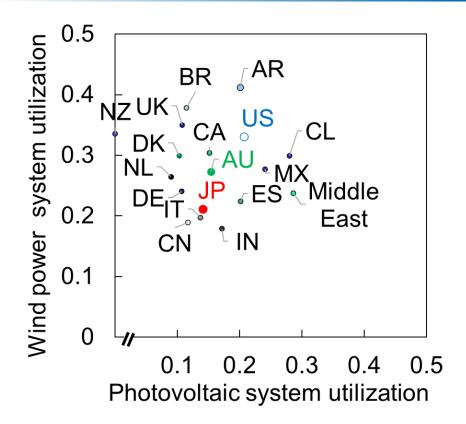

YNU

Hydrogen-Related Technologies Toward Future Carbon Neutrality

Yoshiyuki Kuroda Associate Professor Yokohama National University

Basic Concept of Utilization of Hydrogen as an Energy Source


Climate Change


- Increase of temperature can not be avoided. Only suppression is possible.
- Temperature rise is closely related with the increase in the atmospheric CO₂ concentration
- Temperature rise below 2 degrees Celsius is the long-term goal of Paris Agreement.

Climate change can cause destruction of ecosystems, adverse effects on human health, decrease in food production, and so on. The emission of CO_2 must be reduced to net zero level for sustainable society.

Carbon Cycle on the Earth

Importance of Energy Carrier

- Utilization efficiency of photovoltaics is below 30%.
- Those of wind power is usually $20 \sim 40\%$.
- Renewable energy distributes
 unevenly in the world

Utilization efficiency of photovoltaics and wind powers by countries.

Energy transportation and storage is important to balance supply and demand, using an energy carrier.

1. Significance of Using Hydrogen

Hydrogen is expected to play various roles such as energy conservation, decarbonization of fuel and promotion of introduction of renewable energy.

Roles of hydrogen

1. Lower energy consumption and energy conservation

Ø

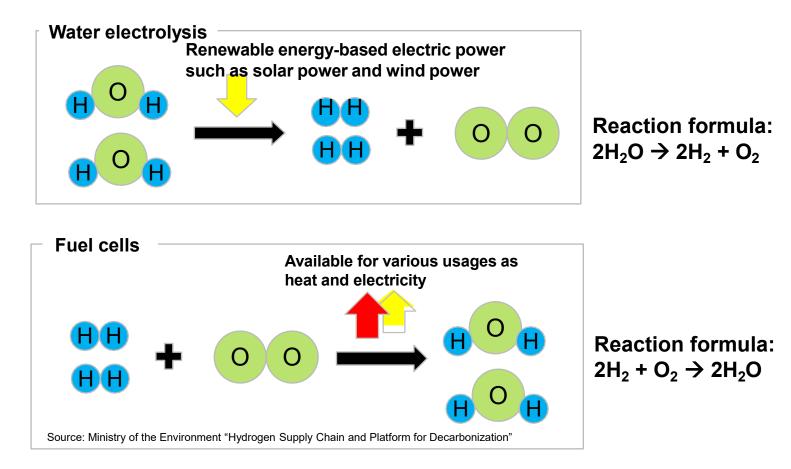
Fuel cells, which generate electricity by reacting hydrogen with oxygen, can reduce energy consumption because they can use energy more efficiently than thermal power generation combusting fossil fuels or internal combustion engines of vehicles.

3. Promotion of introduction of renewable energy

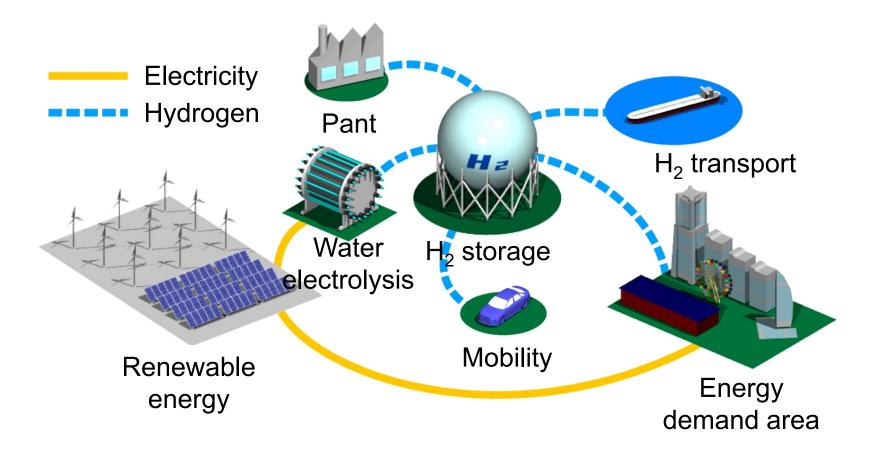
As hydrogen can be easily produced from electric power and stored for a long period, it can be expected as a mechanism to use and adjust renewable energy whose output differs greatly on the weather, etc. (sector coupling).

Ē

2. Decarbonization of difficult-to-electrify areas



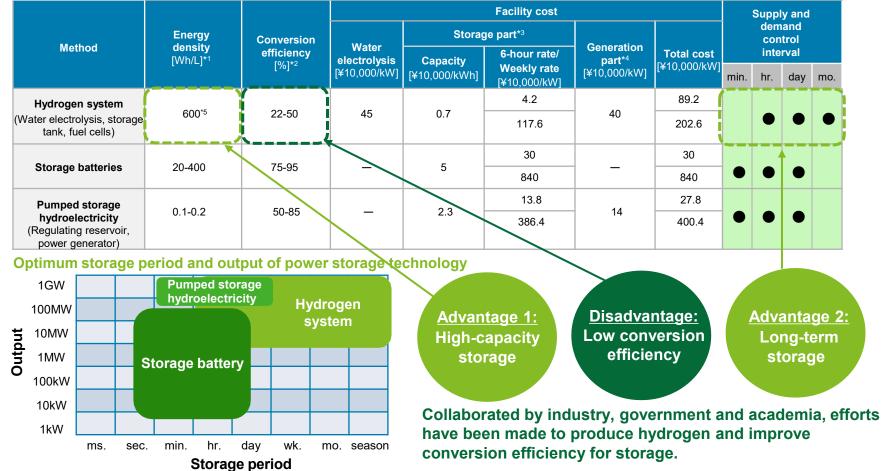
In the areas difficult to decarbonize by electrification such as use of high-temperature heat in the industrial sector and transportation fuels for vessels and air planes, hydrogen is available as a fuel. Furthermore, it is available as an element because it is possible to manufacture basic chemicals and hydrogen-based reduce iron from hydrogen. As use of hydrogen emits no CO_2 , fuel decarbonization is expected.


1. Significance of Using Hydrogen (1) Decarbonization

- Use of hydrogen emits no CO₂ because it contains no carbon.
- If renewable energy-based electric power is used for water electrolysis, no CO₂ is emitted even when producing hydrogen.

Reaction principle of water electrolysis and fuel cells

H₂-Related Technologies to Support H₂ Supply Chains



Various technologies for (1) production, (2) storage and transportation, and (3) utilization of H_2 are necessary to establish H_2 -based society.

Significance of Using Hydrogen Promotion of introduction of renewable energy

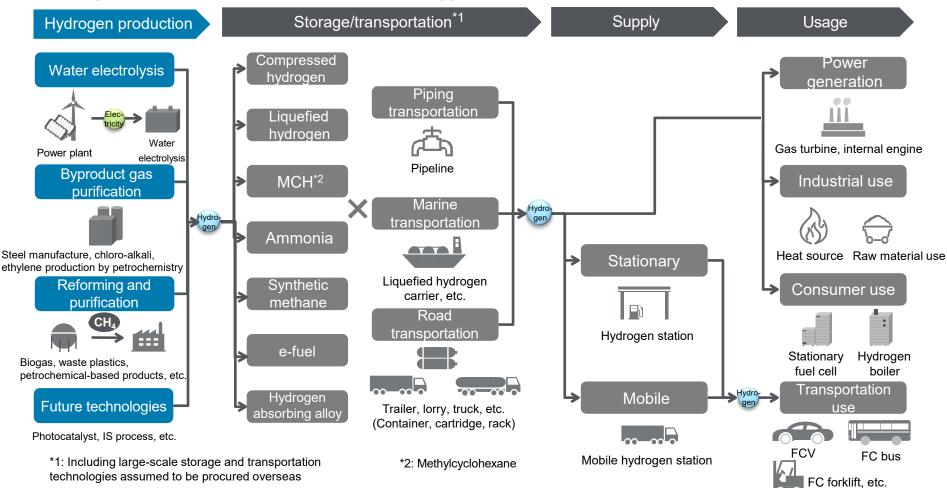
As hydrogen is storable in a large quantity for a long period, it can respond to demand fluctuations and surplus power at the time of mass introduction of renewable energy.

Comparison of power storage technology

*1: Electric energy storable per 1 L *2: Ratio of energy obtained when transforming electric power into a storable form and getting it back as electric power *3: Cost per 1 kW calculated in terms of 6-hour rate and weekly rate *4: Cost for about 1.2 MW *5: For 20,000,000 Pa compressed hydrogen. Source: Prepared by reference to National Research and Development Agency, NEDO Technology Strategy Center, HyGrid Workshop "Development Potential of Hybrid Grid Using Hydrogen" (Apr. 2014)

1. Significance of Using Hydrogen (3) Response to emergency

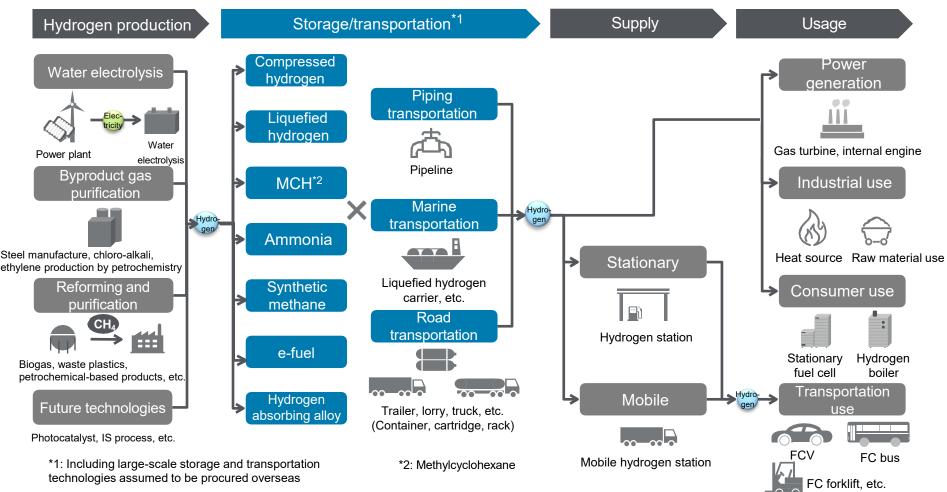
A fuel cell vehicle can be used as an emergency power source in the cases of disasters.


Conversion of required electric energy into the form of FC bus/FCV in emergency cases of main facilities

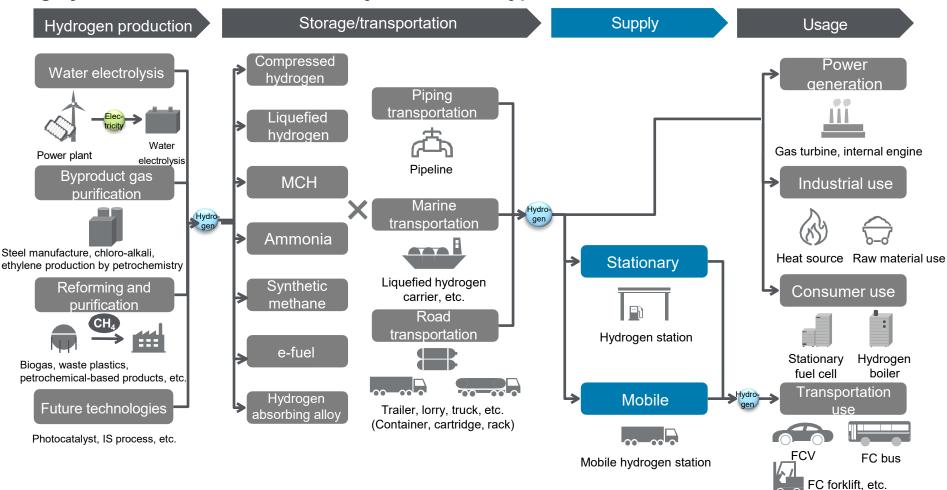
lacinties	Hospital	Convenience store	Shelter (school)	Gas station
Electric energy required in case of emergency	963 kWh/day (Only the facility capable of conducting emergency medical care) Normally required is 10% of 9,628 kWh/day.	235 kWh/day, 47% (Only refrigeration equipment) Normally required is 47% of 500 kWh/day.	100 kWh/day (Lighting and water heating for 200 persons)	16 kWh/day, 19% (Only oil supply equipment) Normally required is 19% of 82 kWh/day.
FC buses required to maintain electric energy for 1 day in case of emergency (455 kWh/unit) * When externally supplying the power, the Electricity Business Act restricts the output to less than 10 kW.	2 units	0.5 units	0.22 units	0.03 units
FCVs required to maintain electric energy for 1 day in case of emergency (120 kWh/unit)	8 units	2 units	0.83 units	0.15 units

Source: Ministry of the Environment "Hydrogen Supply Chain and Platform for Decarbonization". Prepared by Ministry of the Environment by reference to Agency for Natural Resources and Energy, Hydrogen and Fuel Cell Promotion Office "Fuel Cell Vehicles" (Mar. 2014).

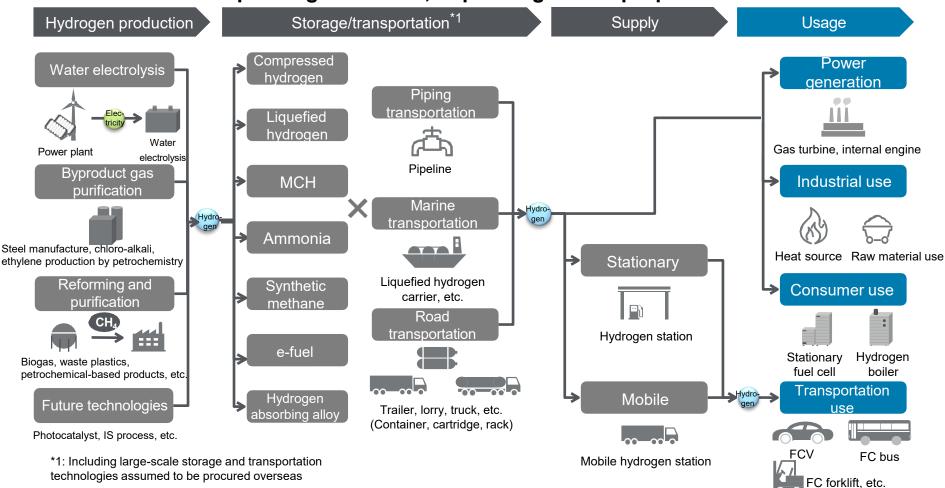
2. Classification of Hydrogen Supply Chain (1) Production technology


Except for future technologies, there are mainly 3 kinds of hydrogen producing methods, allowing its production from various energy sources.

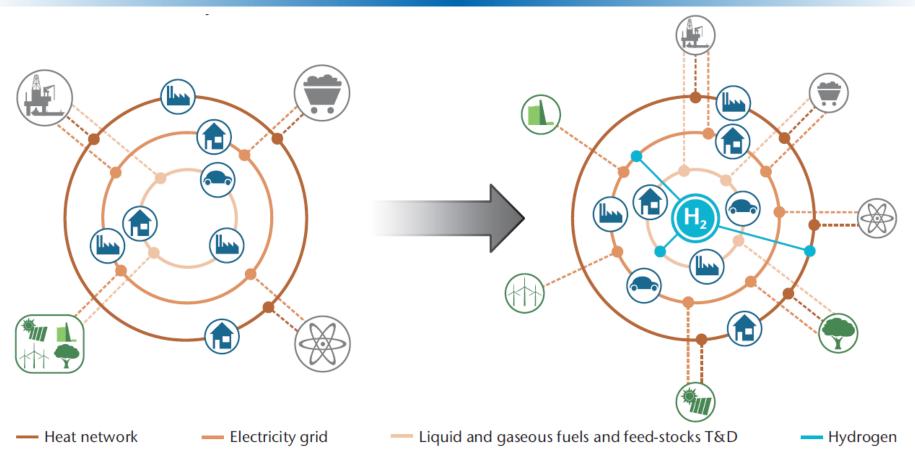
2. Classification of Hydrogen Supply Chain


(2) Storage and transportation technologies

There are many ways to store and transport hydrogen. It is necessary to choose an optimum method according to a transportation distance and volume.


2. Classification of Hydrogen Supply Chain (3) Supply technology

For hydrogen supply, hydrogen stations have been installed mainly for mobility. They are largely classified into the stationary and mobile types.



2. Classification of Hydrogen Supply Chain (4) Technologies used

Usage of hydrogen is classified into "transportation use", "consumer use", "industrial use" and "power generation", depending on the purpose.

Sector Coupling by Hydrogen

- H₂ can connect different energy sectors.
- If a country introduce H₂ to various sectors, the materials and energy cycles can be efficient and environmentally benign.
- But also, a country can introduce H₂-related technology to a part of industries to reduce CO₂ emission.

Types of Hydrogen

CO₂ emission

No CO₂ emission - Gray hydrogen

• Hydrogen produced from fossil fuels with emitting CO₂.

Green hydrogen

 Hydrogen produced by water electrolysis powered by renewable energy

Blue hydrogen

 Hydrogen produced from fossil fuels with recovering emitted CO₂ (CCS).

Yellow hydrogen

 Hydrogen produced by water electrolysis powered by nuclear power.

White hydrogen

Natural hydrogen

Introduction of Scenario Analysis to 2050 Carbon Neutrality in Japan

Hydrogen Energy Systems Society of Japan (HESS)

Example of Scenario Analysis in Japan

- HESS is a membership, non-profit organization established in 1973
- HESS is Japan's leading organization on hydrogen energy and co-organizes international conferences held in Japan, such as HYPOTHESIS XIX (2024), 8th WHTC, Tokyo, Japan (2019), 15th WHEC, Yokohama – Japan (2004), and 1980 – 3rd WHEC, Tokyo – Japan (1980)
- "Scenario Analysis for Future Outlook of Hydrogen Energy toward Carbon Neutrality for Japan" is published on the Journal of the Hydrogen Energy Systems Society of Japan as the 50th Anniversary of the HESS

Scenario Analysis for Future Outlook of Hydrogen Energy toward Carbon Neutrality for Japan

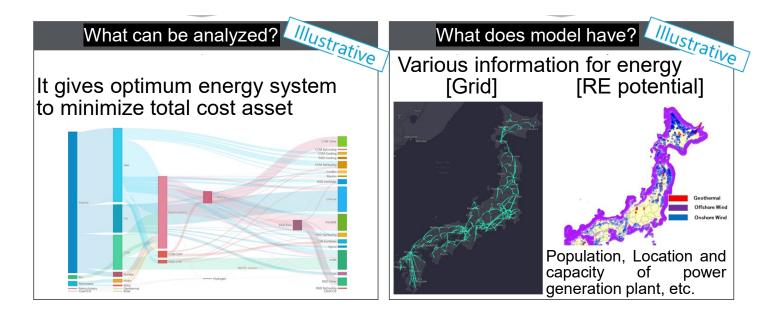
-The 50th Anniversary of the Hydrogen Energy Systems Society of Japan-

Shigenori Mitsushima ¹, Yoshiyuki Kuroda ¹, Tatsuya Okubo ², Masashi Oya ², Hiroshi Tsujigami ³,

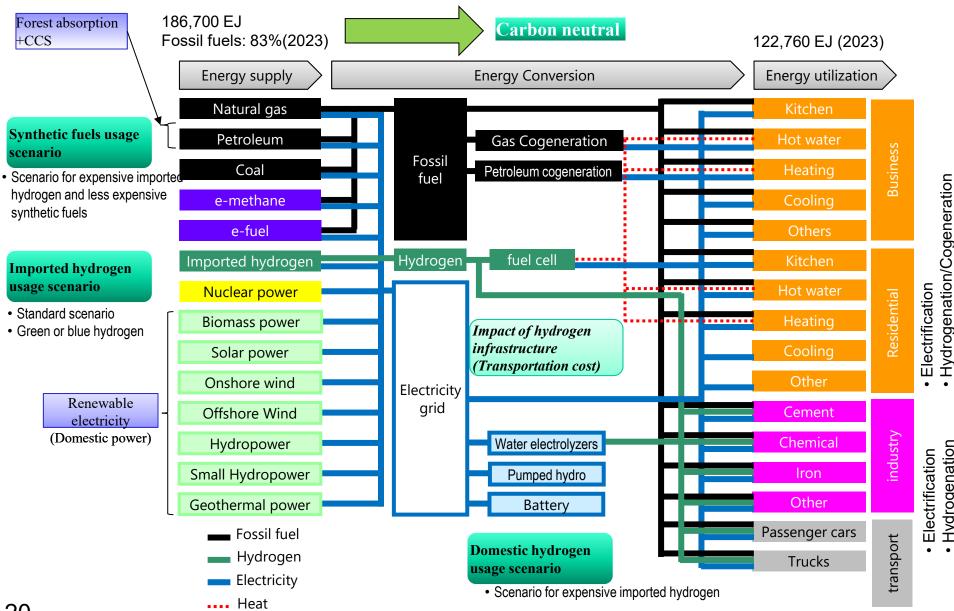
Yuki Ishimoto⁴, Koji Matsuoka⁵, Yoshinori Shirasaki⁶, Tatsuoki Kono⁷, Takamichi Ochi²,

Hiroshi Hamasaki², Shigeo Satokawa⁸

¹Yokohama National University, ²Deloitte Tohmatsu Consulting LLC, ³Iwatani Corp.,

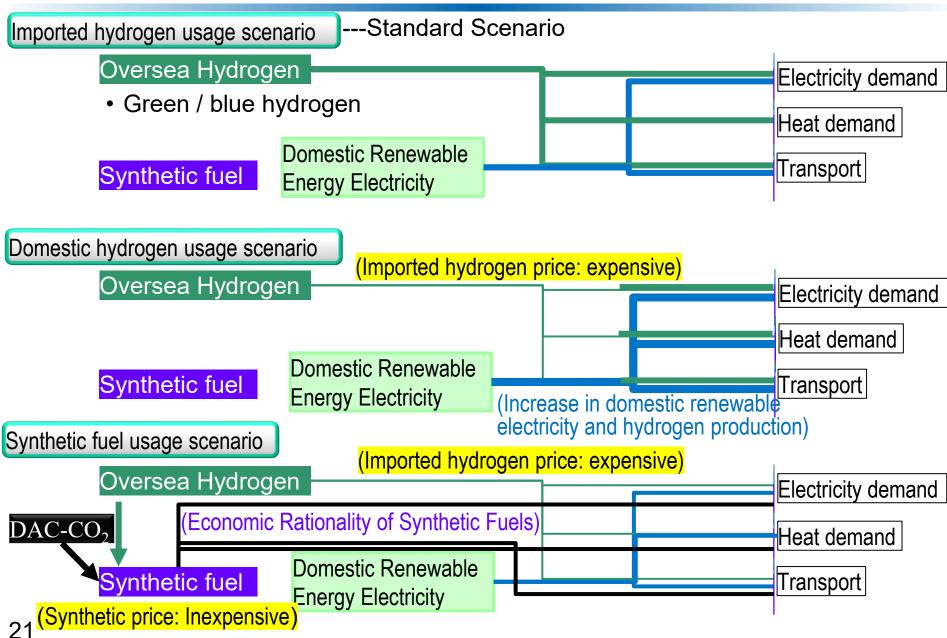

⁴The Institute of Applied Energy, ⁵ENEOS Corp., ⁶Tokyo Gas Co., LTD., ⁷University of Tokyo,

⁸Seikei University

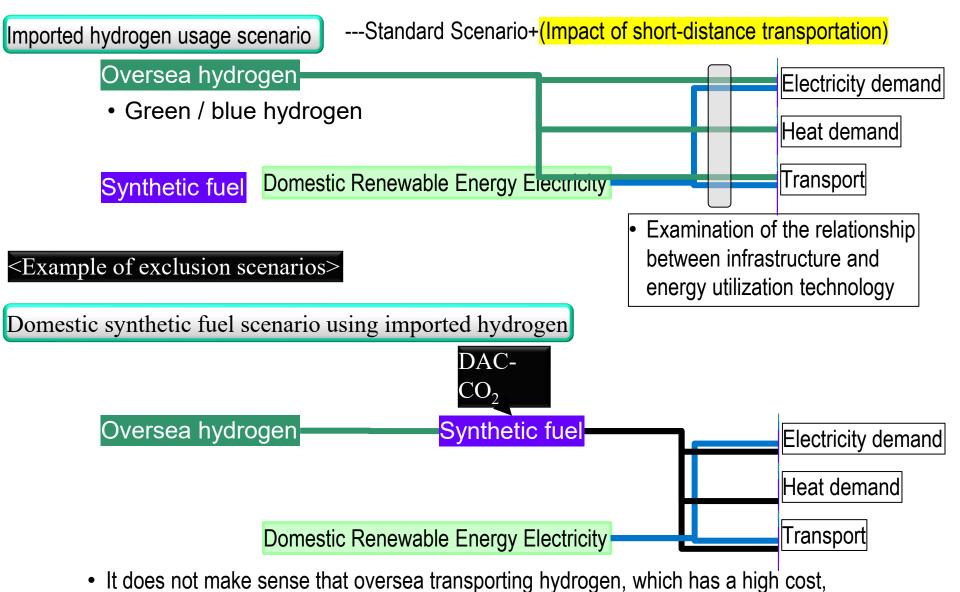

18 Journal of the Hydrogen Energy Systems Society of Japan, 49(2), 68 – 84 (2024) in Japanese

Analysis Model

- Use linear programming to calculate the combination of energy system technologies with the lowest total cost of assets
- A program to analyze the state of long-term energy under the IEA ETSAP
- Used for long-term energy scenario analysis by the IEA and governments around the world
- The model includes the grid status in Japan, including future enhancement, the amount of renewable energy that can be introduced at each location, and the installation cost.
- Costs related to technologies related to hydrogen production, transportation, and utilization are allocated for each scenario.



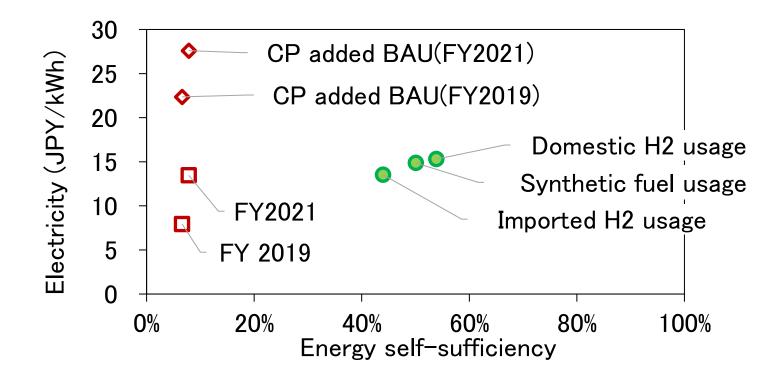
Conceptual Diagram of the Energy System



20

Main Configurations of Scenarios

Extension of the Scenarios


procure CN-CO₂ in Japan, where renewable energy is scarce

Assumptions of Each Scenario

		Imported Hydrogen Usage Scenario	Synthetic Fuels Usage Scenario	Domestic Hydrogen Usage Scenario	
	hydrogen Import price	2.89 JPY/MJ <mark>(37 JPY/Nm³)</mark>	3.83 JPY/MJ (49 JPY/Nm ³)		Japanese official hydrogen price target:
Fuel	e-methane Import price	7.31 JPY/MJ	4.51 JPY/MJ	7.31 JPY/MJ	30 JPY/Nm ³ by 2030 20 JPY/Nm ³ by 2050
	e-fuel Import price	8.18 JPY/MJ	4.51 JPY/MJ	8.18 JPY/MJ	with optimization of blue and green
	Fuel imports		No upper limit		hydrogen
	Solar installation price	Residential solar power: 105,000 - 140,000 JPY/kW Commercial solar power: 88,000 – 135,000 JPY/kW			\uparrow
Power generatio	Wind installation price	Offshore wind: 211,000 – 311,000 JPY/kW Onshore: 108,000-293,000 JPY/kW			This scenario is based on green
n	CCS capacity	< 9,000,000 tons/year			hydrogen
	Nuclear Power Plant Restarts	only 12 units will remain (7 units in 2050)			
	Long-distance H ₂ transportation	5 JPY/Nm ³ (From the port to the vicinity of large-scale or small-lot demand areas)			
Infra- structure	Short-distance H ₂ transportation	5 JPY/Nm ³ (55 JPY/Nm ³ for examination of the impact of Hydrogen Infrastructure)			
Storage	Power grid installation	Master plan of the OCCTO is the lower limit			
	Water electrolyzer	52,000 JPY/kW			
23	Battery	60,000 JPY/kWh			

Energy Self-Sufficiency and Electricity Price in Each Scenario

- In BAU (Business as usual), the carbon price of the IEA's NZE case is added to the current price, so electricity (energy) prices become more than doubled ⇒ 【R&D and social implementation for CN】
- Regardless of the scenarios, Japan's introduction of renewable electricity is advancing, and its self-sufficiency rate is at least 40%.
- Within the assumed energy price range, the difference in electricity (energy) prices between scenarios is about a few JPY/kWh

Main Technology, Facility Scale, and Capital Investment

1 US\$ ≡ 110 JPY		Facility scale (top) Capital investment (bottom)		
		Imported H ₂ usage	Synthetic fuel usage	Domestic H ₂ usage
Overseas	Renewable electricity	1783.2 GW 60.3 trillion JPY	1874.6 GW 63.4 trillion JPY	1522.5 GW 51.5 trillion JPY
	Water electrolyzers	594 .4 GW 30.9 trillion JPY	624.9 GW 32.5 trillion JPY	507.5 GW 26.4 trillion JPY
	Synthesis Reactor	6.0 GW 0.5 trillion JPY	249.5 GW 15.5 trillion JPY	6.8 GW 0.6 trillion JPY
	Marine transportation, etc.	226.5 trillion JPY	48.8 trillion JPY	325.2 trillion JPY*
	Renewable electricity	410.9 GW 77.1 trillion JPY	482.0 GW 94.6 trillion JPY	554.7 GW 112.2 trillion JPY
	Water electrolyzers	0.4 GW 0.02 trillion JPY	13.1 GW 0.7 trillion JPY	56.0 GW 2.9 trillion JPY
	Power grid	x 1.9 of current 7.8 trillion JPY	x 2.2 10.6 trillion JPY	x 2.3 10.9 trillion JPY
	Domestic Hydrogen Transportation	30.3 trillion JPY	7.9 trillion JPY	23.7 trillion JPY
	Residential Fuel Cells	25.0 GW 5.5 trillion JPY	11.5 GW 2.5 trillion JPY	20.8 GW 4.6 trillion JPY
	Fuel Cell Vehicles	3,172,000 cars 15.2 trillion JPY	2,232,000 cars 11.2 trillion JPY	2,264,000 cars 11.3 trillion JPY

Unlike conventional fossil fuels, surplus production is difficult to generate, and investment and development are essential for imports from overseas

- Including CN-CO₂ production of the synthetic fuel usage scenario, the largest investment in both renewable energy and hydrogen production is needed
- Investment in the production of synthetic fuels is more than marine transportation of hydrogen using energy carrier
- If direct use of hydrogen decreases, such as the high cost of short-distance transportation of hydrogen, it will be necessary to strengthen the power system
- The imported hydrogen usage scenario has the highest share of hydrogen, so investment in domestic transportation and hydrogen utilization is the largest

XTransportation investment is based on the assumption that the unit price of transportation will decrease as the volume increases

Issues for Industrialization of H₂-Related Technologies

Industrialization of H₂-Related Technologies

Important points for industrialization

Technology development

Europe, USA, Japan, China... Economic efficiency

- Performance
- Mass production

Laws and regulations

- Domestic regulations
- International standard

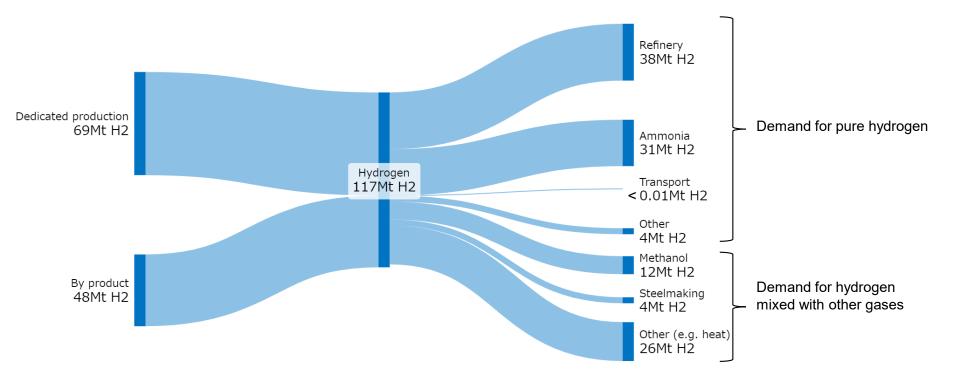
Field of industrialization

Existing applications

- Industrial gas
- Refinery
- Ammonia production

Applications in the middle stage

- Fuel cell forklift
- Fuel cell vehicle


Future applications

- Heavy duty vehicles
- Steel industry
- Carbon recycling
- e-fuel power generation

Existing Applications

Industrial gas, refinery, and ammonia production

- Industrial H₂ is produced as dedicated and as by product.
- Most H₂ is for refinery and ammonia production.
- Fossil fuels are used as H₂ sources and recovery of CO₂ is hardly conducted for the H₂ production.

Applications in the Middle Stage

Fuel cell forklift

- 60,000 FC forklifts have been introduced in supermarkets and distribution warehouses in the U.S.
- National Renewable Energy Laboratory (USA) analyzed that FC forklifts are more competitive than those powered by secondary batteries.

Fuel cell vehicles

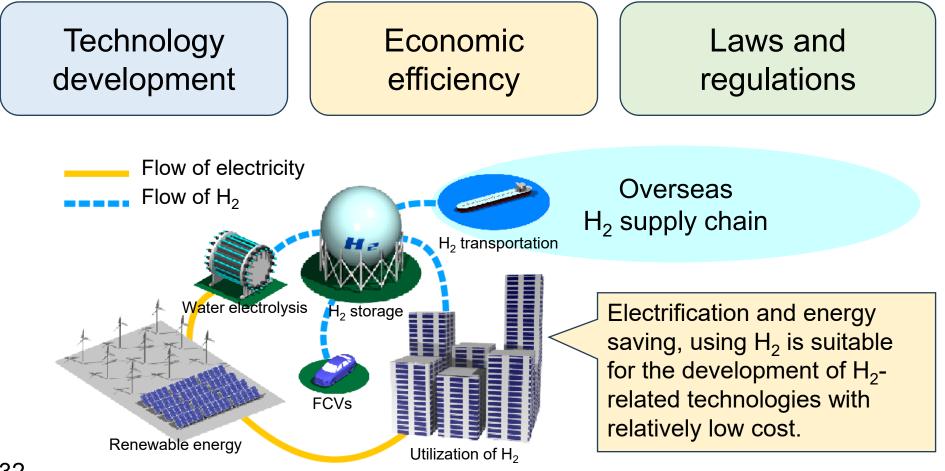
- Long driving distance (~650 km per a charge)
- Short refueling time (3 minutes)
- Need for establishing hydrogen fueling stations
- Mirai (Toyota), CR-V eFCEV (Honda), NEXO (Hyundai), and iX5 Hydrogen (BMW)
- 87,600 FCVs are introduced in the market at the end of 2023.

Future Applications

- Heavy duty vehicles
 →Fuel cells for trucks
- Aircrafts and ships \rightarrow Difficult to be electrified. H₂ and e-fuels are expected.
- Steelmaking industry \rightarrow H₂ is used as reducing agent instead of cokes.
- Basic chemicals (ammonia and methanol) →Production of basic chemicals from green H₂
- Gas turbine

 \rightarrow Novel gas turbines for H₂ only or H₂-mixed gas are developed.

Boiler and industrial furnace
 →H₂ can be used as fuels, but the price of H₂ should be lowered to be more competitive.


Hydrogen Supply Chains

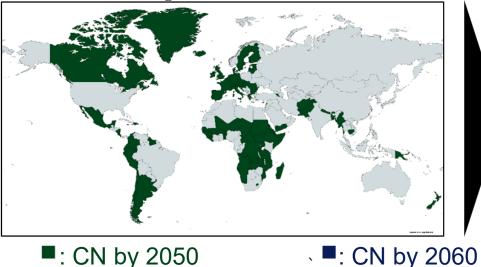
Japan

- Demonstration test of LOHCs is ongoing through Green Innovation Fund.
- Europe
 - Repurposing of natural gas pipelines for H₂ pipelines through European Hydrogen Backbone.
 - Establishing H₂ infrastructure through Important Project of Common European Interest (IPCEI)
- USA
 - Establishing H₂ infrastructure, including job creation, through Regional Clean Hydrogen hub

Toward Industrialization of H₂-Related Technologies

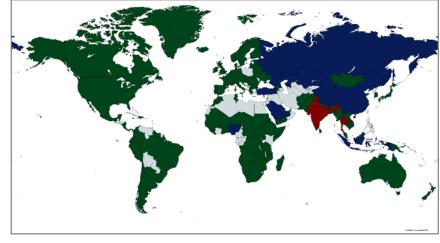
- Constructing H₂ supply chain in and out of the country is necessary.
- It is useful for a country to focus on a technology for which the country will have competitiveness (in the future).

Summary


- H_2 is quite promising for the efficient use of renewable energy in out society without emission of CO_2 .
- Various H₂-related technologies are developed and some of them are in the practical stage.
- To establish all of technology, economy, and laws and regulations, and H₂ supply chain is important to introduce H₂-related technologies in our society.

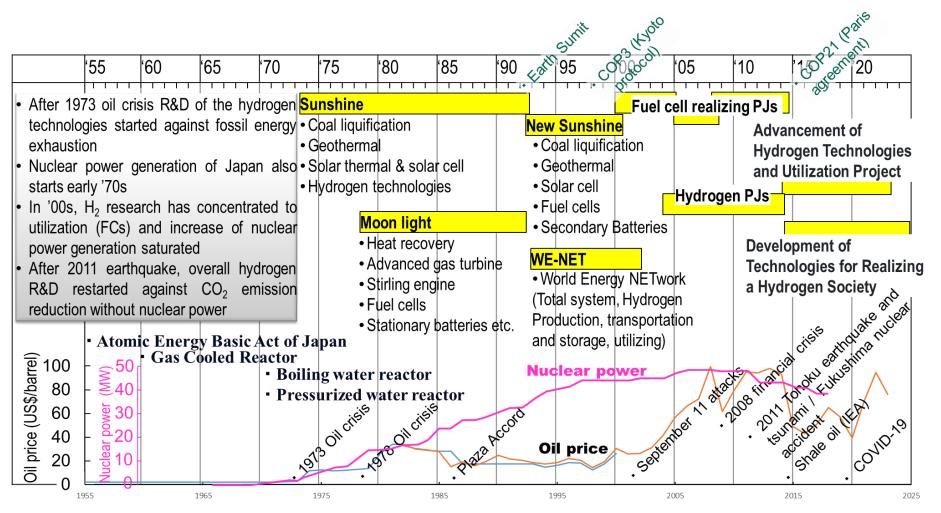
Target of Carbon Neutrality by Countries

Recently, >150 countries or regions have committed timebound target for carbon neutrality.


Countries or regions where committed carbon neutral with period

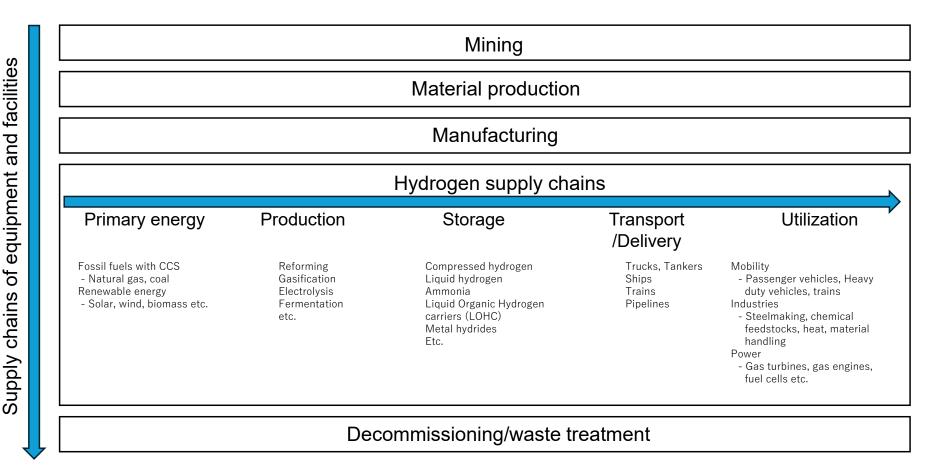
At the end of COP25 (Dec. , 2019): 121 countries, 17.9% of total CO_2 emission

By 2050: 144 (42.2%) By 2060: 152 (80.6% China and Russia) By 2070: 154 (88.2% India+)


At the end of COP26 (Nov. , 2021): more than 150 countries, 88.2% of total CO_2 emission

CN by 2060

35 <u>https://www.rite.or.jp/news/events/pdf/kihara-ppt-kakushin2021.pdf</u> (in Japanese)


History of H₂-Related Projects in Japan

- '70–'80: H₂ technology is developed for fuels alternative to oils.
- '90–: developed for environmental issues and carbon neutrality.
- Development of infrastructure and legal framework are also important.

Supply Chains for Hydrogen-Related Technologies

It is important to establish both H_2 supply chains (left to right) and supply chains of equipment and facilities (top to bottom.)

Hydrogen supply chains

Primary energy

- Fossil fuels with CCS
 - Natural gas, coal
- Renewable energy
 - Solar, wind, biomass etc.

Production

- Reforming
- Gasification
- Electrolysis
- Fermentation etc.

Storage

- Compressed hydrogen
- Liquid hydrogen
 - Ammonia
- Liquid organic hydrogen • carriers (LOHC)
- Metal hydrides etc.

Transport/delivery

Utilization

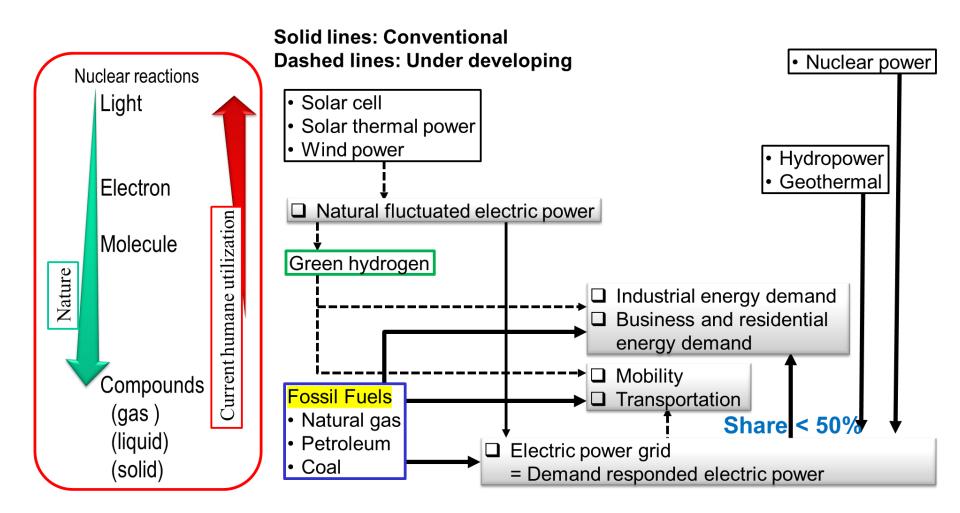
- Mobility •
 - Passenger vehicles, heavy duty vehicles, trains
- Industries •
 - Steelmaking, chemical feedstocks, ٠ heat, material handling
- Power •
 - Gas turbines, gas engines, fuel • cells etc

- Trucks, tankers
- Ships
- Trains
- Pipelines

Characteristics of H₂ among Fuels

Table 1 Enthalpy changes and Gibbs energy changes in combustion reactions of LHV for various fuels at 25°C

Fuel	ΔH_0 / kJ L ⁻¹	ΔG_0 / kJ L ⁻¹	ΔH_0 / kJ g ⁻¹	ΔG_0 / kJ g ⁻¹
$H_2(g)$	-10.8	-10.2	-120	-113
CO(g)	-12.6	-11.5	-10.1	-9.2
CH ₄ (g)	-35.8	-35.8	-50.1	-49.9
CH₃OH(I)	-15,767	-16,928	-19.9	-21.4
C ₆ H ₁₄ (I) (n-Hexane)	-29,298	-30,286	-44.7	-16.7
C ₆ H ₆ (I) (Benzene)	-35,179	-35,639	-40.1	-40.7
C (carbon black)	-20,800	-25,813	-9.2	-11.4


- High mass energy density but low volume energy density Relatively low theoretical efficiency $(\Delta H_0 / \Delta G_0)$
- Rapid combustion, wide explosive range (4.0–75 vol%)
- \rightarrow Transportation technology (liq. H₂, NH₃, and LOHC) is important.

Characteristics of H₂ Carriers

- Several H₂ containing compounds are regarded as H₂ carriers.
- H₂-absorbing alloys are also used for H₂ storage, whereas they are mostly used for stationary storage because of their high density.
- Table 2 Characteristics of typical hydrogen carriers.

	b.p.	density	Carrier	Usage	$\Delta H_{ m H2\ combustion}$		$\Delta H_{ m H2}$ dehydrogenation	$\Delta H_{ m direct\ combustion}$	
	(°C) (g/cm ³)	(g/cm ³)			[Wh/kg]		$\Delta H_{ m H2\ combustion}$	[Wh/kg]	[Wh/L]
Comp. H ₂ ** (70 MPa)	-253	0.0382	_	Direct	33,322	1,274	N/A	33,322	1,274
Liq. H ₂	-253	0.0706		Vaporization	33,322	2,353	N/A	33,322	2,353
Liq. NH ₃	-33.4	0.601	N_2	Dehydrogenation /Direct	5,916	3,556	12.70%	5,167	3,105
Methylcyclo- hexane	101	0.769	Toluene	Dehydrogenation	2,052	1,578	27.20%	-12,929	-9,955
Liq. CH₄	-165	0.46	CO_2	Direct/Reforming	16,752	7,706	26.10%	13,899	6,393
CH ₃ OH	64.7	0.792	CO ₂	Direct/Reforming	6,290	4,980	18.10%	5,535	4,383

Role of H₂ To Utilize Renewable Energy

H₂ is used as an energy carrier to eliminate imbalance of renewable energy.

Scarcity of Iridium for SPEWE

The scarcity of iridium is a crucial issue on the installation of SPEWE for full decarbonization.

Required capacity of water electrolyzer Worldwide fossil energy demand for transportation 10^{20} J \rightarrow equivalent to H₂ of 700 Mt_{H₂}

Using SPEWE at the cell voltage ≈ 1.79 V (long term efficiency: $\approx 70\%_{\rm LHV}$) \rightarrow average electric power \approx 3800 GW

Because renewable energy is fluctuating, electrolyzer of ≈ 12000 GW will be required to supply H₂ for transportation.

Required Ir to install enough SPEWE Annual production of Ir: $\approx 4 \text{ ton/y}$ Current requirement of Ir for SPEWE: $\approx 0.5 \text{ g}_{\text{Ir}}/\text{kW}$ \rightarrow 6000 ton_{Ir} is necessary (at least \approx 1500 years)

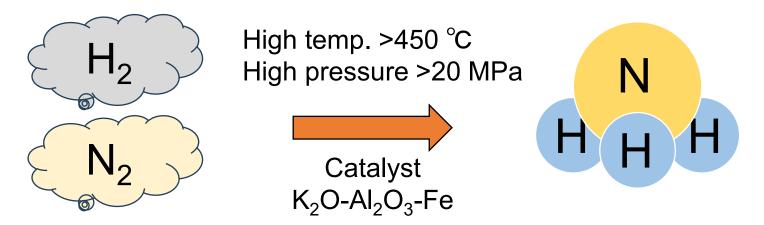
> [1] The parameters were referred to the following paper, M. Bernt, A. Siebel, H. A. Gasteiger, J. Electrochem. Soc. 2018, 165, F305.

*average electric power is roughly 1/3 of the peak power.

*H₂ HHV of

285.8 kJ/mol

42

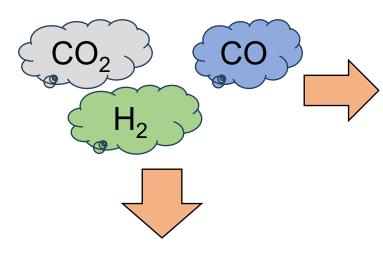

Types of Fuel Cells

Name of Fuel Cells (Abbr.)	Alkaline (AFC)	Polymer Electrolyte (PEFC)	Phosphoric Acid (PAFC)	Molten Carbonate (MCFC)	Solid Oxide (SOFC)
Electrolyte Ion- conductive species	Potassium hydroxide OH ⁻	Polymer electrolyte membrane H ⁺	Phosphoric acid H ⁺	Molten carbonate CO ₃ 2-	Stabilized zirconia O ²⁻
Fuel	H ₂	H ₂	H ₂	H ₂ , CO	H ₂ , CO
Main Features	 Relatively low operating temperature Wide range of material selection 	 High power density Low operating temperature 	•Compact system •Effective use of waste heat	•High voltage •High overall efficiency	•Internal reforming of fuel is possible due to high temperature operation
Application	Special applications such as space and military use	Fuel cell vehicle, Bus, Cogeneration for home stationary use	Sewage treatment plants, beer breweries, hotels, data centers, etc.	Hospitals and Beer Breweries	Cogeneration for home stationary use, Triple combined cycle

Production of Ammonia

Haber–Bosch process

Established in 1913 by Frits Haber, Carl Bosch, and Alwin Mittasch.



 Hydrogen (H₂) is currently produced from natural gas with emission of CO₂.

 \rightarrow 1.9 ton of CO₂ emission to produce 1 ton of ammonia.

• Key point is to use green hydrogen with better catalyst that enables production of ammonia at milder conditions (<450 °C, <10 MPa).

Products of Synthetic Fuels

e-Methane

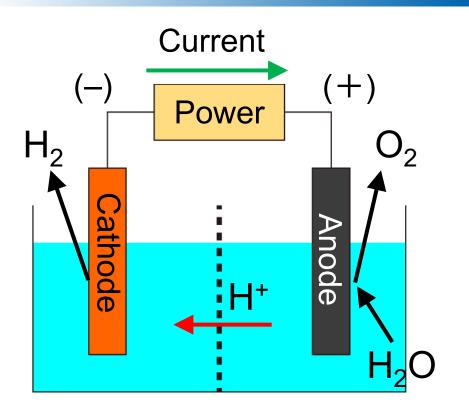
- mixed with natural gas for pipeline transportation.
- Minimum change in infrastructure

e-Fuels (Liquid hydrocarbons)

- Mixture of LP gas, naphtha, various oils, wax, etc.
- Separation and isomerization are required

e-Fuels (Methanol)

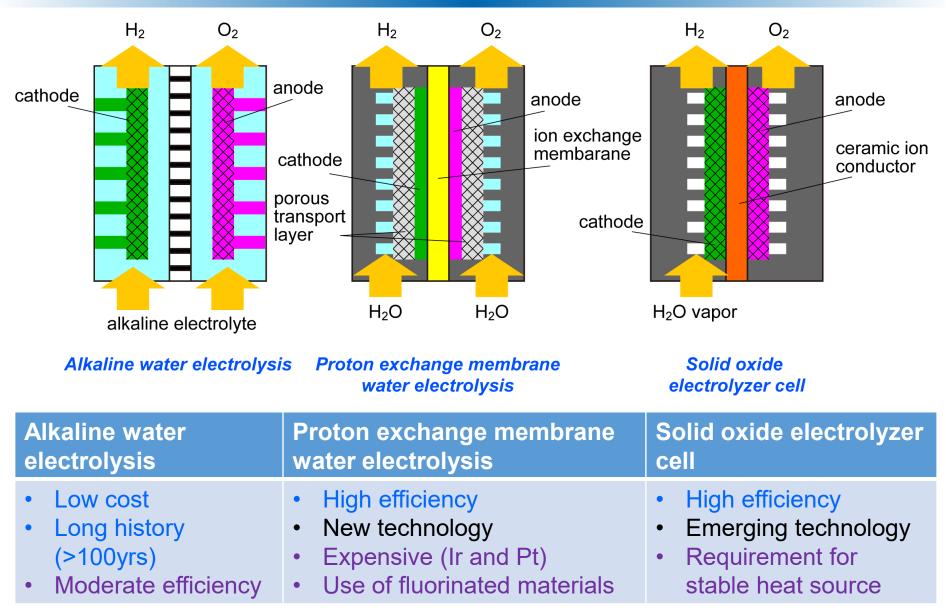
- Produced from CO and/or CO_2 with H_2 .
- Various oils are produced from methanol by the methanol-to-gasoline (MTG) reaction.

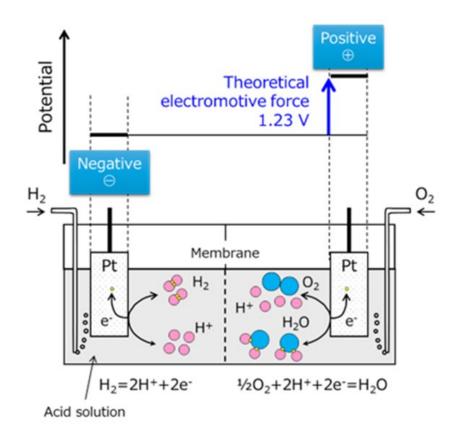

Characteristics of Hydrogen Absorbing Alloys

$M + H_2 \rightleftharpoons MH_2 + heat$

High pressure Low pressure

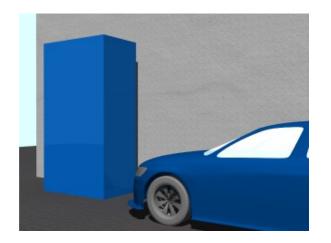
- Hydrogen storage for stationary use.
- For transportation of hydrogen, hydrogen absorbing alloys are expected as low pressure media which is suitable for applications compliance with regulations.
- Thermochemical compressor for pressurized hydrogen
- Anode material for Ni-MH battery.


To Produce H₂: Water Electrolysis


- H₂O is split into H₂ and O₂ by the application of electric power.
- No CO₂ is emitted during the production of hydrogen, if renewable electricity is used.

- Highly efficient and environmentally benign method to produce H₂ from renewable energy.
- The price of H₂ depends on the price of electricity.
- Clean water is necessary for most water electrolysis.

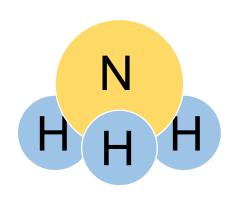
Types of Water Electrolysis


To Use H₂: Fuel Cells

- Generating electricity, using H_2 as a fuel.
- No CO₂ is emitted during the generation of electricity.
- Heat is also recoverable other than electricity (co-generation system).
- High theoretical energy efficiency (94% based on LHV).

cf. Thermal plant: ca. 50% based on LHV

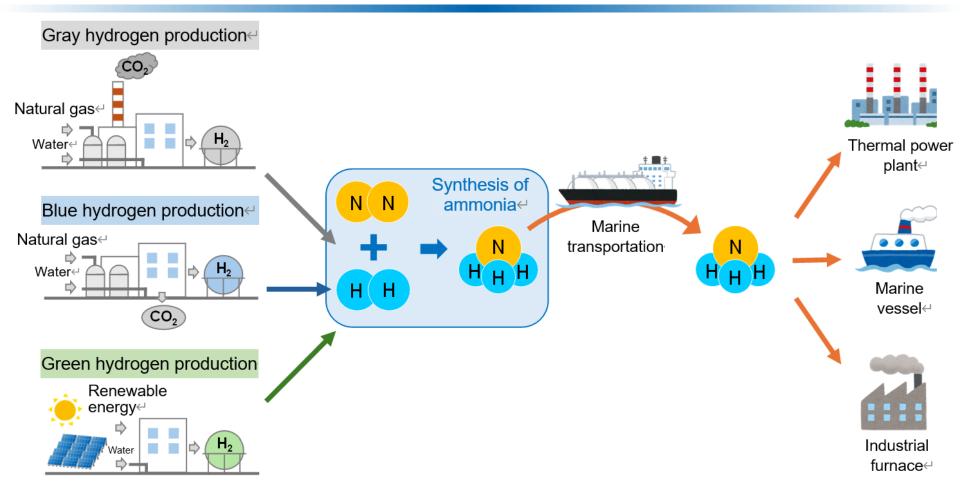
Characteristics of Fuel Cells


Polymer electrolyte fuel cells (PEFCs)

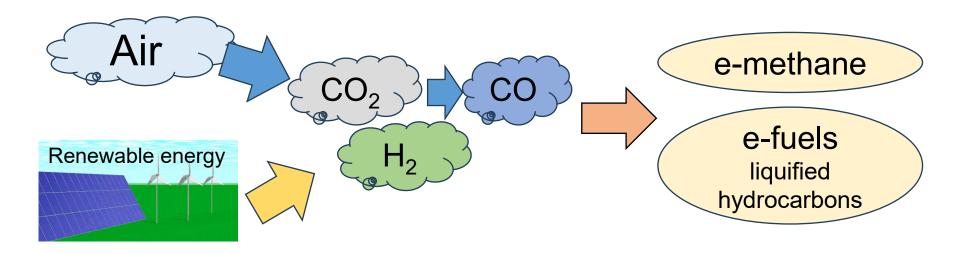
- Mobility & stationary use
- Low operation temp. 80–120 °C
- Scarcity and cost of platinum
- H₂ fuel must have quite high purity (Catalyst poisoning by CO)

Solid oxide fuel cells (SOFCs)

- Stationary use
- High operation temp. 700–1000 °C
- Noble metal is not required.
- Less limitation in purity of H₂ fuel


To Transport H₂: Ammonia Fuels

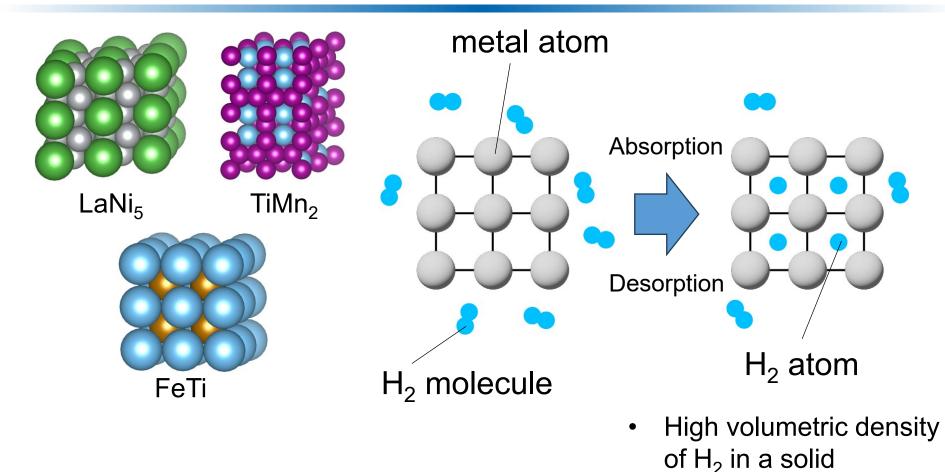
Ammonia


- Important basic chemicals
- Worldwide production 200 million tons/yr 80% is used as fertilizer
- Produced from H₂ and N₂ by Harbor–Bosch process
- Liquified by compression at 1 MPa
- No emission of CO₂ upon combustion →Carbon-free fuels
- Co-firing of ammonia with coal or combustion of ammonia only is expected for thermal power.
- Highly toxic
 - \rightarrow Important to prevent leakage

Ammonia as a Hydrogen Carrier

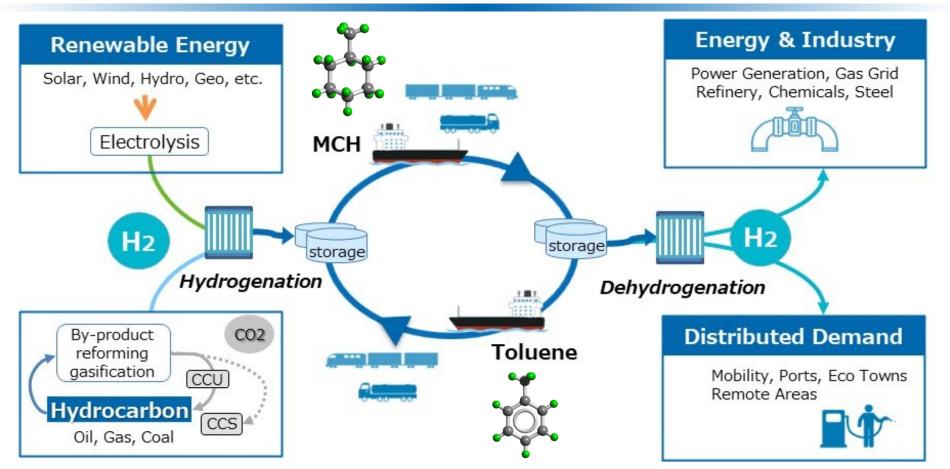
- Ammonia is produced from H_2 and used as a clean energy.
- Volumetric energy density of ammonia (12.8 GJ m⁻³) is much higher than that of H₂ (0.01 GJ m⁻³).
- Maintaining supply chain of ammonia is important.

To Transport H₂: Synthetic Methane and Synthetic Fuels



- e-Methane and e-fuels are produced from aerobic CO₂ and green H₂ by catalytic processes.
- Combustion of e-methane and e-fuels emit CO₂, although they are originally produced from equivalent amount of CO₂ from air.

 \rightarrow They do not increase the amount of CO₂ in atmosphere.


• Direct air capture (DAC) technology is necessary to promote the production of e-methane and e-fuels.

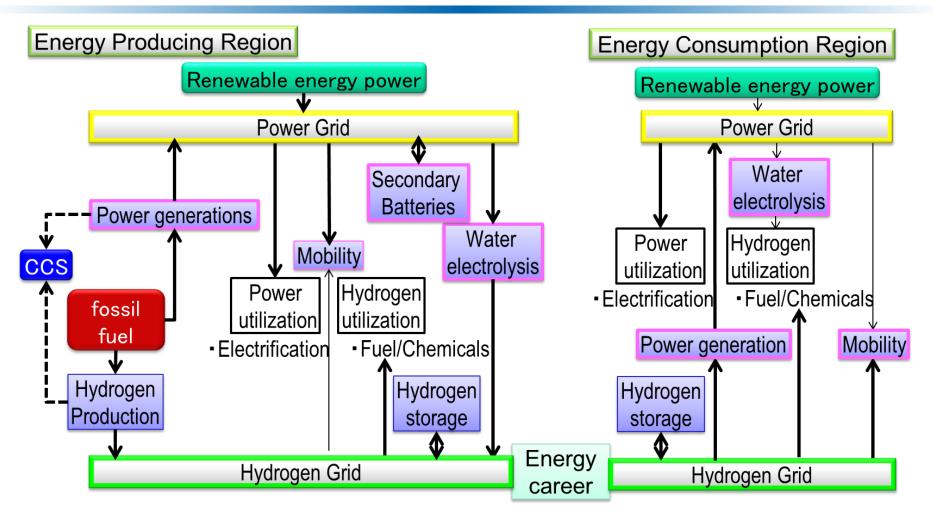
To Transport H₂: Hydrogen Absorbing Alloys

Used for storage of H_2

To Transport H₂: Liquid Organic Hydrogen Carrier

- The transportation of H₂ gaseous at room temperature is disadvantageous to other energy carriers.
- Hydrogenated liquid organic compound (organic hydride) is useful as H₂ carriers for transportation.
- Detail will be explained in the lecture by Dr. Okada.

To Transport H₂: Liquified Hydrogen


Photo of liq. H₂

Liq. H₂ tank truck

- H₂ liquified at –253 °C
- No byproduct
- 1.75 times the capacity of a highpressure H_2 tank
- Large energy requirement for liquification, but small requirement for gasification.
- Boiling off should be suppressed.
- Land transportation of liq. H₂ is established.
- Maritime transportation is under development.

H₂ Energy System Based on Renewable Energy

- Energy producing region (left side) produces H₂.
- Energy consumption region (right side) receive H₂ and uses it for energy source like a primary energy as well as for chemical processes.