ASEAN Japan Energy Efficiency Partnership (AJEEP) ECAP34

Power to Gas Technology of Kanadevia and Green Energy Projects

Decarbonization Systems BU
Business Development Department
13th November 2024

- 1. Company Introduction
- 2. Decarbonization in Southeast Asia
- 3. Power to Gas Technologies of Kanadevia
- 4. Our Power to Gas Projects in Southeast Asia

- 1. Company Introduction
- 2. Decarbonization in Southeast Asia
- 3. Power to Gas Technologies of Kanadevia
- 4. Our Power to Gas Projects in Southeast Asia

Change of the Trade Name

From 1st October 2024, the trade name was changed from Hitachi Zosen to...

Technology for people and planet

Kanaderu

Harmonized

+

Via

way or method (of our stakeholders)

"To create a world living in balance with nature through the technology expertise"

Company Profile of Kanadevia

Kanadevia Corporation	※ As of 31	I st March 2024 / US\$=JP¥ 155.00
◆ Date of Founded	01 st April 1881	
◆ Date of Incorporated	29 th May 1934	
◆ President	Mr. Michi Kuwahara, Representative Director and COO	
◆ Location of Head Offices	Osaka and Tokyo, Japa	n
◆ Capital (JP¥ 45,442 million) [※]	US\$ 293million	Carbon Neutral Others, 0% Solution, 10%
◆ Order intake (JP¥ 715,134 million)	*US\$ 4,614 million	Machnary &
◆ Net Sales (JP¥ 555,844 million)*	US\$ 3,586 million	Infrastructure, 16% FY2023
◆ Employees	12,148	Sales by Division
◆ International Operations	79 International Subsidia 4 International Branches	Enviromental
◆ ASEAN Operations	Jakarta, Bangkok, Singa	apore and Hanoi

Business Overview of Kanadevia

Environmental Systems

- WtE (Waste to Energy) Plants
- Biomass System
- Water Treatment System, etc.

Machinery & Infrastructure

- System Machinery
- Social Infrastructure

Carbon Neutral Solution

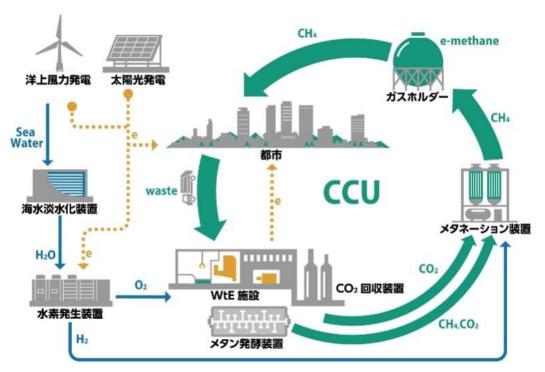
- Water Electrolyzer
- CO₂ Recycling
- Process Equipment
- Wind Power Generation
- De-NOx System for Marine Engine

Power to Gas

Business

Participation of Kanadevia in COP29

Exhibition at the Japan Pavilion>


Innovative Waste Management to Achieve Circular Economy & Net-Zero GHG **Emissions**

<Pre>entation at JEFMA Seminar on COP29>

Achieving Circular Economy by Diverse Waste Management Technology & CCUS

by Michi Kuwahara, COO

20th November, 2024 10:30~11:45 (ca. 15 min within this time)

https://www.env.go.jp/earth/cop/cop29/pavilion/exhibition/display/#kanadevia

Track Records for Southeast Asia

- Kanadevia has track records of Waste to Energy (WtE) plants, water gates and bridge in Southeast Asia.
- In the future, in addition to the conventional businesses, we would like to contribute to decarbonization in Southeast Asia through our Power to Gas technologies.

WtE Plant / NEDO Hanoi, Vietnam IW 75t/d, 1.93MW

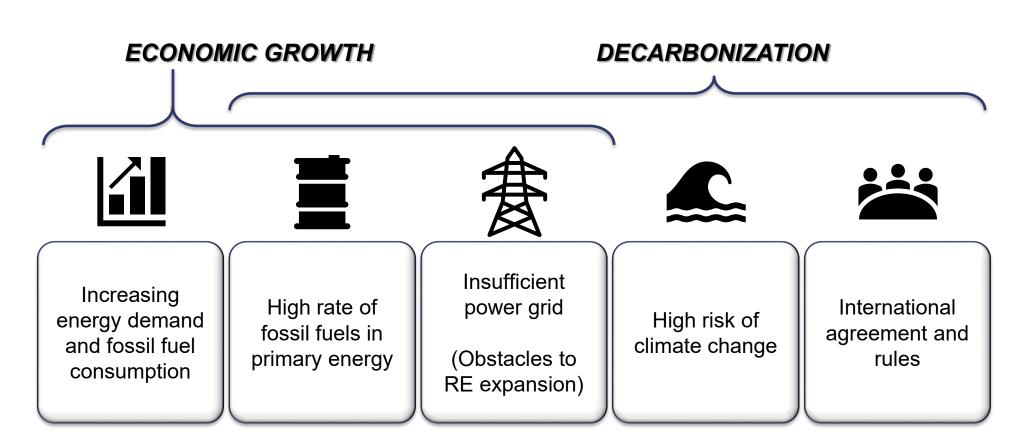
Water Gate / Ayutthaya, Thailand

WtE Plant / Nongkhai, Thailand RDF(MSW) 370t/d, 8MW

Rama IX Bridge / Bangkok, Thailand

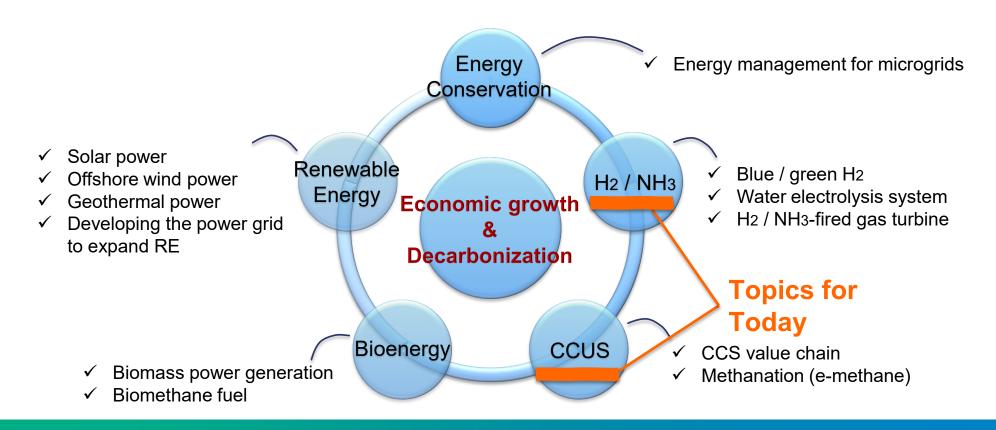
WtE Plant / Rayaong, Thailand RDF(MSW) 300t/d, 9.8MW

WtE Plant / West Java, Indonesia MSW, more than 2,100t/d


Under Contract Negotiation
Project Scheme: BOT

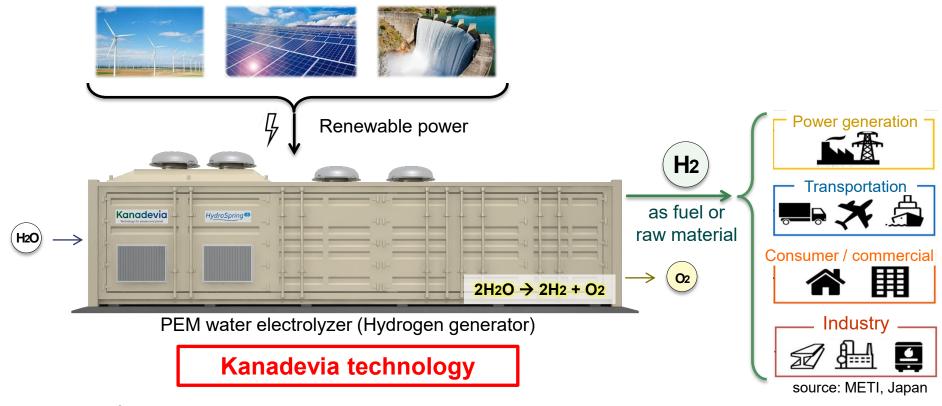
Operation Period: 20 years

- 1. Company Introduction
- 2. Decarbonization in Southeast Asia
- 3. Power to Gas Technologies of Kanadevia
- 4. Our Power to Gas Projects in Southeast Asia


Challenges and Issues for Southeast Asia

- Along with economic growth, energy demand and fossil fuel consumption are increasing.
- With a high risk of climate change, it is extremely important to develop decarbonization through international cooperation.
- Southeast Asia is at a critical situation where it must tackle both of economic growth and decarbonization challenges at the same time.

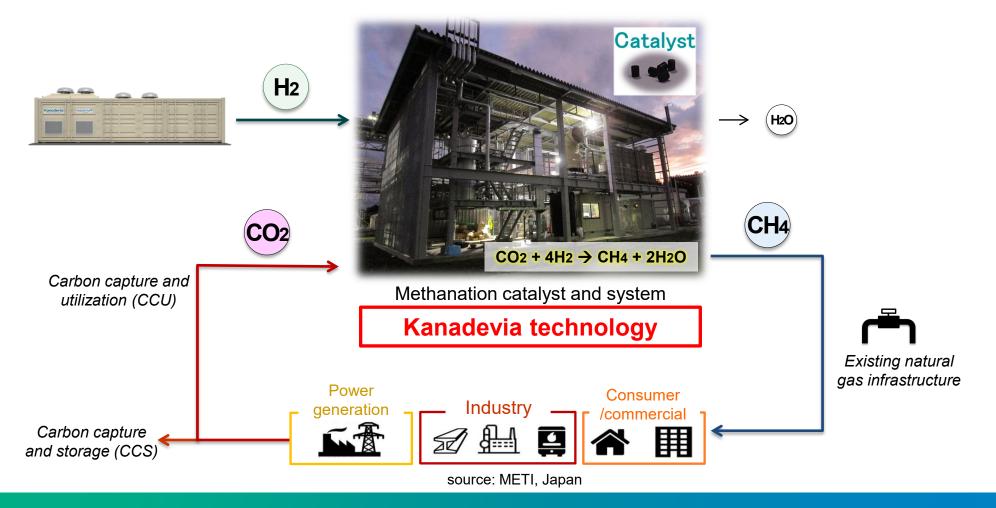
Various Decarbonization Tech. that can be Tailored to Each Country


- Each country in Southeast Asia has different socio-economic goals due to their different stages of development, geographical conditions and natural resources.
- Considering this situation, to achieve both economic growth and decarbonization, it is essential for each country to appropriately select and utilize energy sources and technologies, e.g. [1] energy conservation, [2] renewable energy, [3] hydrogen, ammonia, [4] bioenergy, [5] carbon dioxide capture, utilization and storage (CCUS).

- 1. Company Introduction
- 2. Decarbonization in Southeast Asia
- 3. Power to Gas Technologies of Kanadevia
- 4. Our Power to Gas Projects in Southeast Asia

Green Hydrogen Production Technology of Kanadevia

- Green H₂ refers to H₂ generated through water electrolysis using RE.
- Green H2, as a decarbonized fuel and green raw material, can be an option to achieve decarbonization in Southeast Asia.



<Major types of electrolysis>

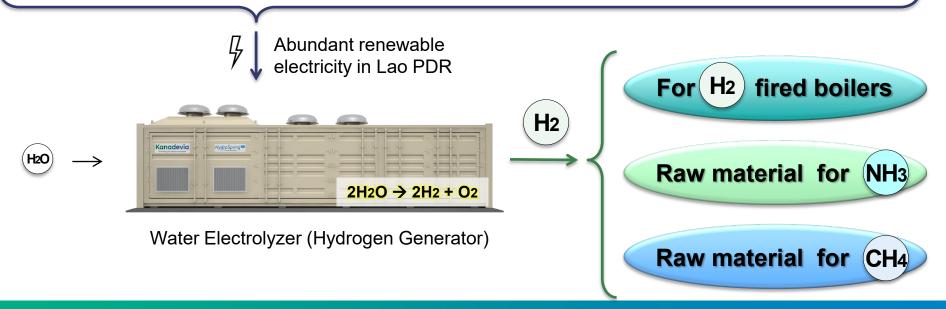
Proton Exchange Membrane Water Electrolysis (PEMWE)	High safety and maintenance characteristics. High purity H2 production. High adaptability to fluctuations in renewable power supply.
Alkaline Water Electrolysis (AWE)	Relatively low CAPEX. * PEM type is advantageous when using RE.

Methanation Technology of Kanadevia

- Methanation technology is one of the CCU technologies that produces e-methane (synthesized methane) using H2 and CO2 as resource.
- E-methane can be distributed, stored and used through existing natural gas infrastructure.

- 1. Company Introduction
- 2. Decarbonization in Southeast Asia
- 3. Power to Gas Technologies of Kanadevia
- 4. Our Power to Gas Projects in Southeast Asia

Promotion of Green Energy Projects in Lao PDR


- Lao PDR has large hydropower generation capacity.
- Kanadevia has been working on business development related to green energy in Lao PDR.
- Effective use of abundant electricity for green H₂ production.

Electricity Data of Lao PDR in 2022

Hydropower generation capacity	9,615 MW (82.5%)*1
Export volume of electricity	2,358 MUSD (28.8%, Largest)*2

*1 :STATISTICAL YEARBOOK ENERGY AND MINES 2022 (Ministry for Energy and Mines, Lao PDR) *2 JETRO

JCM Project for Lao PDR Utilizing its Abundant Renewable Energy

- Kanadevia carried out JCM feasibility study with the support of METI, Japan.
- The theme was "Decarbonization of steam by H₂ generators and boilers in Lao PDR".

Hydro Power Stations

Electric Power

Hydrogen Generator

Hydrogen Steam **Fired Boiler**

 H_2

NO CO2 emissions during combustion

> **Existing Facility**

- < Main Outcomes >
- ✓ Appealing to the gov. of Lao PDR about the benefits of the PJ.
- ✓ Analyzing and sharing of challenges* that need to be overcome to realize the PJ.
- < Benefits of the PJ > Effective use of electricity / Less fossil fuel consumption / Reduction of CO₂ emissions

Photo of the Lao government and Kanadevia

Challenges need to be overcome

	Setting incentives for green H2	 ✓ Supplying green electricity to green H2 PJs with the price to make the PJs feasible. (electricity costs account for a large proportion of green H2 production.) ✓ Setting an environmental value (e.g. carbon pricing, subsidies) is essential.
Procurement of PDR is		 ✓ The CO2 emission factor of grid power to be re-evaluated taking into consideration that > 80% of elec. in Lao PDR is from hydropower stations. ✓ It is necessary to establish a system for distinguishing RE from the other when transmitting elec. via power grid.

Other Green Energy Projects

- Kanadevia has carried out other green energy PJs in Lao PDR
 - ✓ Green energy PJs through NEDO* International Demonstration PJs.
 - ✓ Identification of roadmap for carbon neutral through CTCN program by Power to Gas technologies.

Projects to implement green energy

2018 Methanation FS $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$

CO₂ from cement factory

2020 Identification of Roadmap for three stages by GEC.

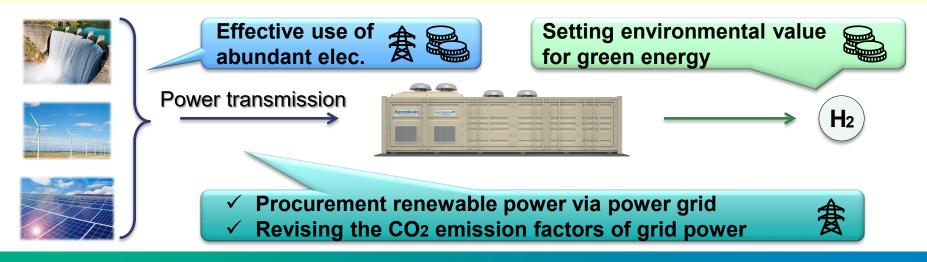
Shot term (up to 2025)

Medium term (2026-2035)

Long term (2036-2050)

2021 Green NH₃ FS

 $N_2 + 3H_2 \rightarrow 2NH_3$


NH₃ for chemical products

^{*}NEDO: New Energy and Industrial Technology Development Organization. NEDO is a Japanese national research and development agency.

^{*}CTCN: Climate Technical Centre & Network. *GEC: Global Environment Centre

Proposal to Spread Green Energy in Southeast Asia

- Effective use of green elec. by providing it with feasible prices for green H₂ production
 - ✓ Electricity cost is major part of green H₂ production.
 - ✓ Green H₂ production facility can be recognized as a tool of energy management system without curtailing output from renewable power stations.
- Setting an environmental value for green energy
 - ✓ Green H2, as an alternative energy to fossil fuels, does not emit CO2 when being burned.
 - ✓ It must be effective to establish a carbon pricing system, subsidies and/or incentives to green H2.
- Procurement of renewable electricity via power grid
 - ✓ It is necessary to establish a system, such as green energy certificate, for distinguishing RE from the other when transmitting elec. via power grid.
 - ✓ Given the current circumstance toward renewable energy, it is necessary to revise the CO₂ emission factors of grid electricity.

Summary

<Decarbonization of Southeast Asia>

- ✓ Southeast Asia is facing a situation where it must balance economic growth with decarbonization.
- ✓ It is necessary for each country to select the suitable tech. and energy.

< Kanadevia Technologies and PJs in Southeast Asia >

- ✓ Kanadevia has developed H2 generation and methanation technologies for prosperity of Southeast Asia in the fields of H2 / NH3 and CCUS.
- ✓ Kanadevia has carried out feasibility studies for green H2 PJ (JCM PJ), green NH3 and e-methane PJs (NEDO PJs) based on the concept of well use of hydropower in Lao PDR.
- ✓ For the project execution in the SEA region, our capability is proven by references on WtE, Water gate, Bridge and other projects.

<Towards the Spread of Green Energy in Southeast Asia>

- ✓ Supplying green electricity with feasible prices for green energy production.
- ✓ Improving the power grid for renewable electricity supply and establishing a system, such as renewable energy certificate.
- ✓ Revising the CO₂ emission factors of the grid power.
- ✓ Setting incentives for green energy.

Contact: Hiroyuki Maruyama (Mr.)

Email: maruyama_hi@kanadevia.com