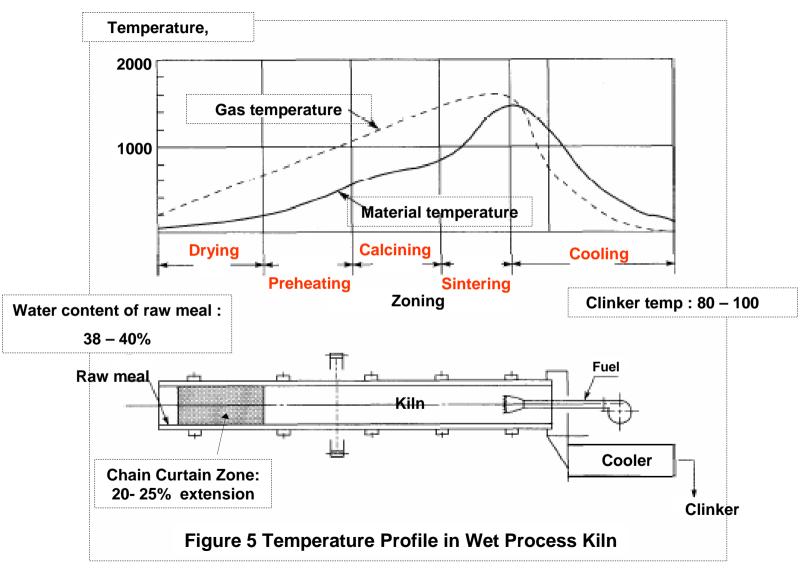

Cement Process & Energy Saving

October, 2006 The Energy Conservation Center, Japan Taichiro Kawase

Bird-eye View of Japanese Cement Factory

Electrostation Precipitator

> Raw mill crusher


Layout of one Japanese cement factory

Chemical Composition of Raw Materials and Cement Product

Raw Materials						
	CaO(%)	SiO2(%)	Al2O3(%)	Fe2O3(%)	SO3(%)	CO2(%)
Limestone	47-55					37-43
Clay		45-78	10-26	3-9		
Silica		77-96				
Iron-ore				40-90		
Gypsum	26-41			37-59		

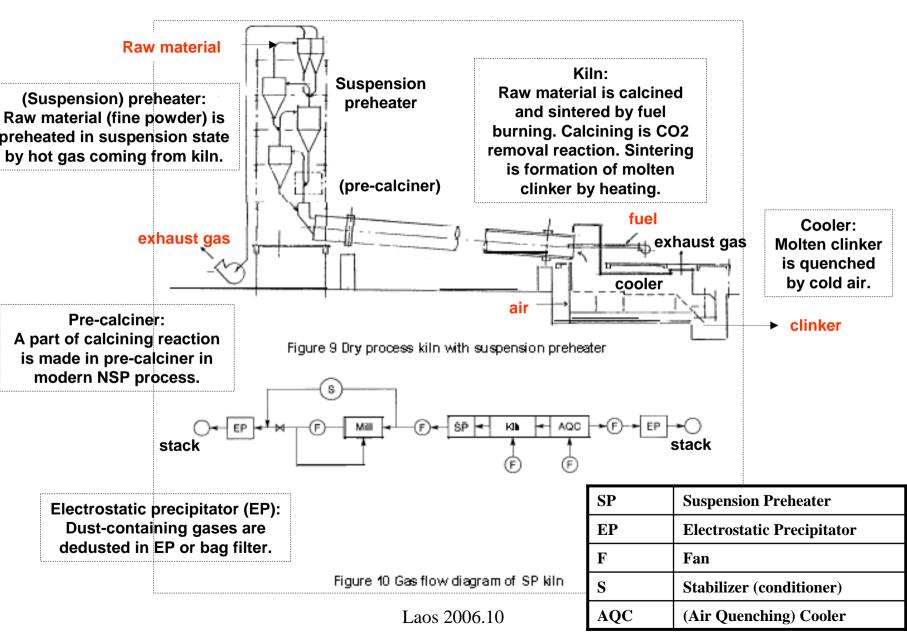
Cements						
	CaO(%)	SiO2(%)	Al2O3(%)	Fe2O3(%)	SO3(%)	others
Portland cement	63-65	20-23	3.8-5.8	2.5-3.6	1.5-2.3	
Blended cement (BF slag)	52-58	24-27	7.0-9.5	1.6-2.5	1.2-2.6	

Temperature Profile in Wet Process Kiln

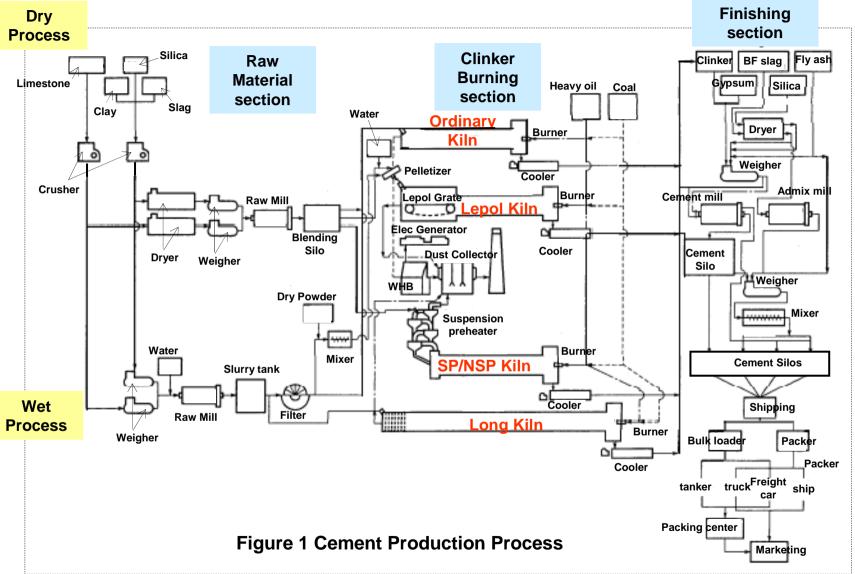
Chemistry of Cement Process

	Heating ()	
	100 ~ 110	Vaporization of physically adsorbed water
drying	110~700	Vaporization of chemically bonded water
calcining	700 ~ 750	Decomposition of MgCO ₃
calcining	750 ~ 900	Decomposition of CaCO ₃ , Formation of 2CaO ¹ SiO ₂
	950 ~ 1200	Transition to · 2CaO · SiO ₂
	1200 ~ 1300	Formation of 3CaO · Al ₂ O ₃ , 4CaO · Al ₂ O ₃ · Fe ₂ O ₃
sintering	1300 ~ 1450	Formation of 2CaO·SiO2, Sintering of Al2O3, Fe2O3, Na2O, K2O, etc
		During a course of cooling, pebble-like black colored clinker is formed, which consists of the following components;
	cooling	3CaO · SiO ₂ : referred to as Alite or C ₃ S
	g	2CaO · SiO ₂ : referred to as Belite orC ₂ S
	150 ~ 200	3CaO · Al ₂ O ₃ : referred to as aluminate phase or C ₃ A
		4CaO · Al ₂ O _{3 ·} Fe ₂ O ₃ : referred to as ferrite phase or C ₄ AF

Raw Materials and Energy required for production of <u>1 ton of Cement</u>


Raw Materials (kg)	
Limestone 1,095	
Clay	204
Silica	78
Iron-ore	30
Gypsum	34
total	1,439

Energy Consumption	
Fuel (*1)	105
Electric power (kWh)	99
(*1) : kg of coal equivalent where HHV of coal is 6,200 kcal/kg.	


Fuel by kind (%)	
Coal	78
Petroleum coke	13
Combustible waste	5
Heavy oil	4

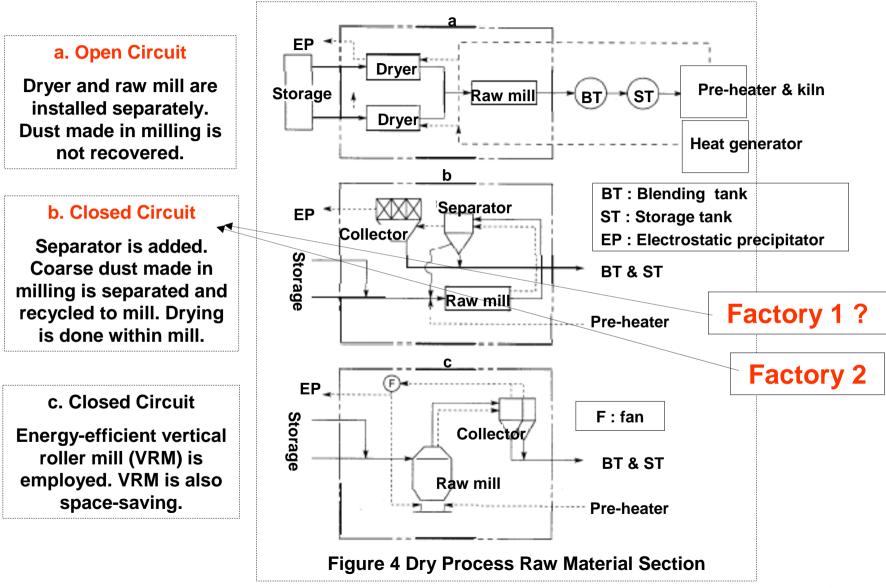
Base : 1 ton of cement

Dry Process Kiln with Suspension Preheater (SP · NSP)

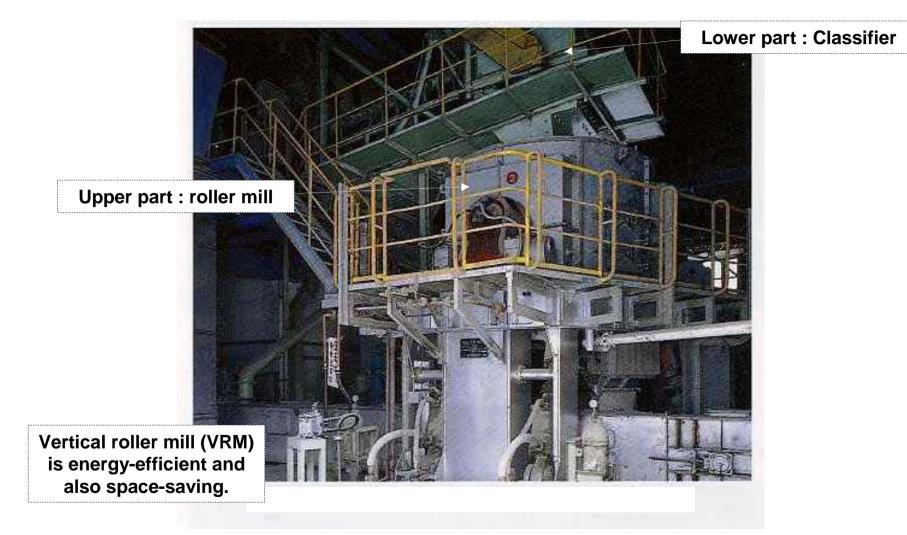
Cement Production Process

Factory 1

Heat Requirement in Burning Section


kcal/kg-cl	Source(1)	Nm ³ /kg-cl(2)
940	Yogyo Kogaku H/B	1.65
1,487	JCTA(1961)	2.62
1,357	"	2.38
954	"	1.68
797	JCTA(1981)	1.40
773	"	1.35
	940 1,487 1,357 954 797	940 Yogyo Kogaku H/B 1,487 JCTA(1961) 1,357 " 954 " 797 JCTA(1981)

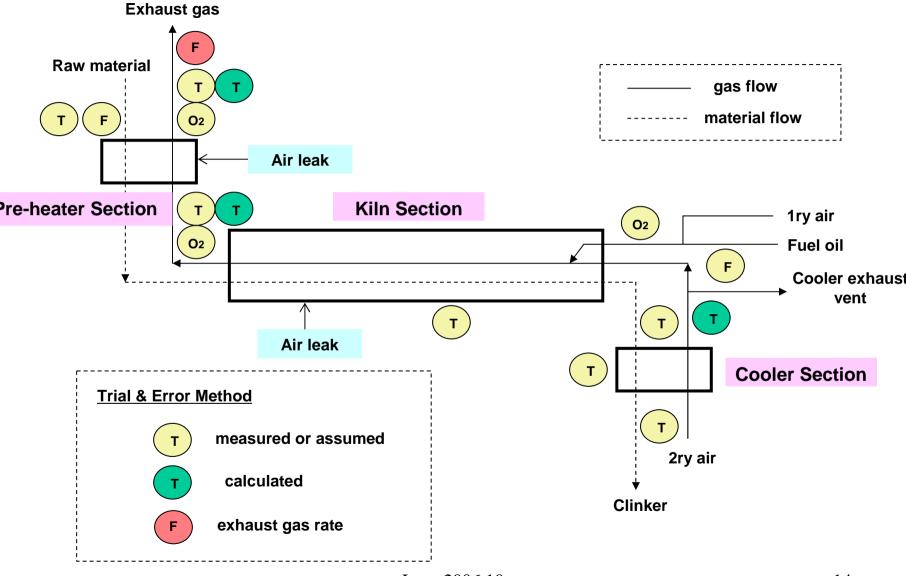
Note 1: JCA means Japan Cement Technology Association


2: Estimated based on 1.40 Nm3/kg-cl in SP kiln

Factory 2

Dry Process Raw Material Grinding System

Vertical Roller Mill

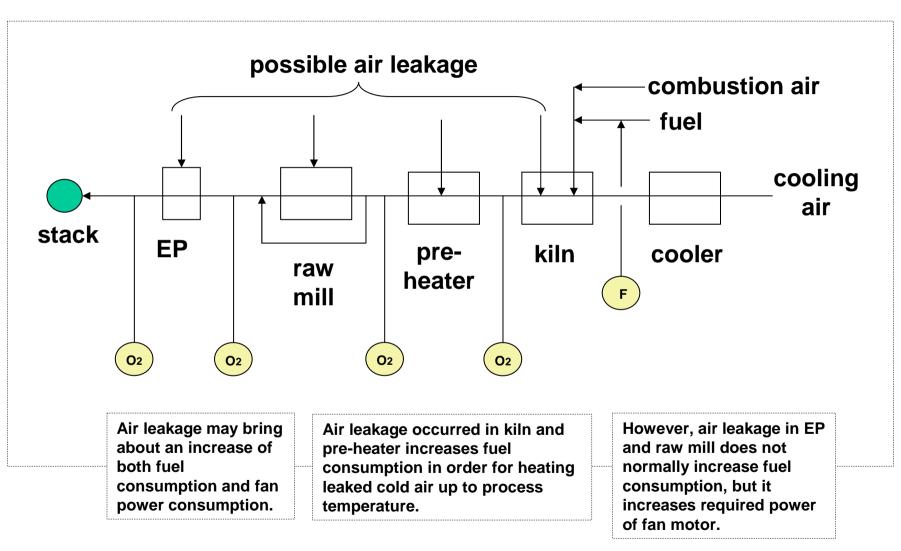

Energy Management System (Cement Factory)

Aspect		Major Activity
Organization	Accountability	Employee education (awareness)
	Organization	EE&C promotion committee
		Energy manager
Monitoring	Monitoring	Data recording & reporting to employee
	Targeting	Specific energy consumption (SEC)
		Key efficiency parameters
Technology		Technical review (energy audit)
Operation &	House keeping	Product yield (avoid off-spec product)
maintenance (O&M)		Preventive maintenance (avoid unscheduled shutdown)

Energy Saving Measures in Cement Factory

	Raw material section	Clinker burning section	Finishing section
First step	1)Selection of raw materials 2)Management of particle fineness 3)Management of grinding media	 1)Prevention of unscheduled shutdown 2)Selection of fuel 3)Prevention of leakage 	 Management of particle fineness Management of grinding media
Second step	 1)Replacement of fan rotor 2)Improvement of temperature and pressure control system 3)Improvement of mixing & homogenization system 4)Installation of closed circuit mill (separator) 	 1)Use of industrial waste (waste tire, etc) 2)Heat recovery of pre-heater exhaust gas and cooler exhaust gas (drying of raw material and generation of electricity) 3)Replacement of cooler dust collection from multiclone to EP 	 1)Installation of closed circuit mill (separator) 2)Installation of feed control system
Third step	1)Conversion from wet process to dry process 2)Replacement of ball or tube mill by vertical roller mill 3)Pneumatic transfer of raw material to mechanical transfer	1)Conversion of fuel from petroleum to coal 2)Conversion of SP to NSP 3)Conversion of planetary cooler to grate cooler	1)Use of industrial waste (slag, pozzolan)
		Laos 2006 10	13

Boundary of Heat Balance (Measurement)



Laos 2006.10

Prediction of Maximum Attainable Production Capacity (Tool : Heat Balance Method)

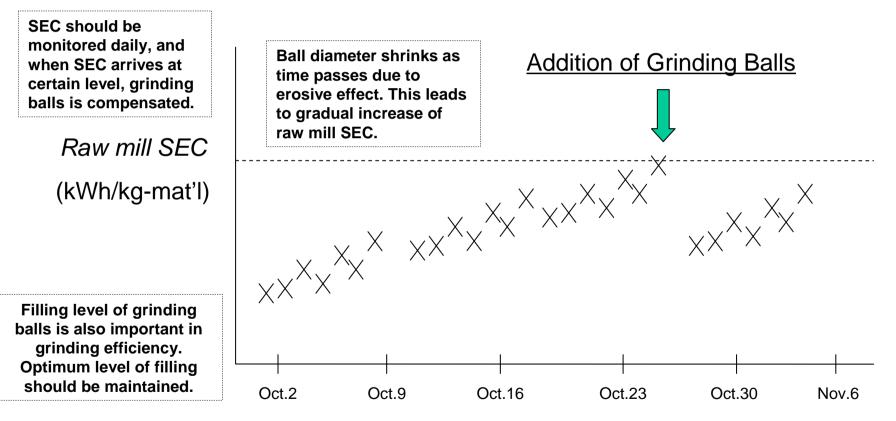
1	Principle of prediction: Production capacity is approximately proportional to exhaust gas rate which flows through kiln.
2	Calculate exhaust gas rate at pre-heater exit or kiln exit (m ³ N/kg-cl) by heat balance method
3	Compare with exhaust gas rate of well-designed kiln as shown below;
	- SP kiln with Grate cooler : 1.4 m ³ N/kg-cl
	- SP kiln with Satellite cooler : 2.0 m ³ N/kg-cl
	- Dry kiln : 2.6 m³N/kg-cl
	- Wet kiln : 2.4 m ³ N/kg-cl

Air Leakage Measurement

Calculation of Energy Loss due to Air Leakage

Location	Leak Amount (m3N/h)	Fuel Increase (kg-oil/h)	Elec Power Increase (kWh/h)
Burner	0		
Kiln Exit	5530	48.9(*1)	18.7(*2)
Preheater Exit	8690	76.8(*1)	29.3(*2)
Raw Mill Exit	36340		28.2(*3)
EP exit	57670		33.1(*4)

Calc	Calc Equation of Fuel Loss :		
(*1)	fuel = Leak (m3N/h) x 0.31 kcal/m3N · degC x (320 – 30) (degC) /10170		
Calc	Equation of Elec Power Loss :		
(*2)	elec (kiln fan) = Leak (m3N/h)/60 x (320+273)/273 x 400mmAq /6120 /0.7		
(*3)	elec (RM fan) = Leak (m3N/h)/60 x (90+273)/273 x 150mmAq /6120 /0.7		
(*4)	elec (EP fan) = Leak (m3N/h)/60 x (130+273)/273 x 100mmAq /6120 /0.7		
Note	e : LHV of fuel oil = 10170 kcal/kg		
	P mmAq Kiln fan(50) Preheater(400) Raw Mill(150) EP(100)		


Monitoring of SEC & Key Variables

Section	Monitored Item	Unit			
Raw Mill	SEC = Electric Power / Raw Material Charge	(kWh/kg-raw mat'l)			
Clinker Burning	SEC = Fuel / Clinker production O2% of Kiln Exhaust Gas	(kcal/kg-cl) (%)			
Cement Mill	SEC = Electric Power / Cement Production	(kWh/kg-cement)			

Recording of SEC on the Graph

Watch raw mill SEC daily and add grinding balls in right timing

10% energy saving expected

Example of Monitoring Sheet (Wet Process)

						-		1
	Eng. unit	10/2	10/3	10/4	10/5	10/6	10/7	10/8
Raw Material Charge	ton/d	760						
Clinker Production	ton/d	500						
Cement Production	ton/d	520						
Elec Cons in Raw Mill	kWh/d	38000						
Fuel Cons in Kiln	10 ³ xkcal/d	750						
Elec Cons in Cement Mill	kWh/d	36000						
O2 in Kiln Exhaust Gas	vol%	4.5						
SEC of Raw Mill Sect.	kWh/kg-rm	50						
SEC of Kiln Sect.	kcal/kg-cl	1500						
SEC of Finishing Mill Sect.	kWh/kg-ce	69.2						