
Cement Process & Energy Saving

November, 2006 Hideyuki TANAKA Technical Expert International Engineering Dept., The Energy Conservation Center, Japan

Bird-eye View of Japanese Cement Factory

Layout of one Japanese cement factory

Electrostatic Precipitator (EP Dust collector)

> Raw mill crusher

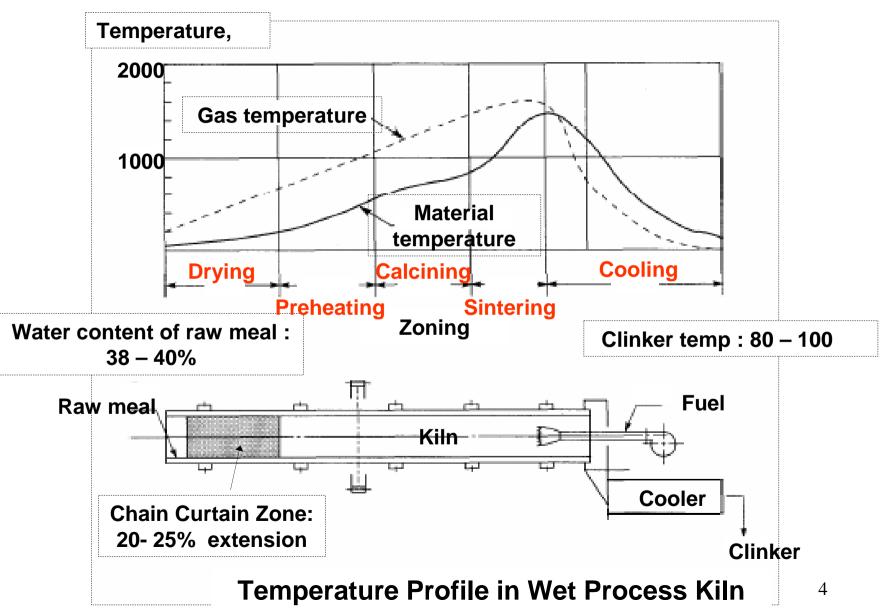
Chemical Composition of Raw Materials and Cement Product

Raw Materia	als						(%)
	C	CaO	SiO ₂	Al2O3	Fe2O3	SO ₃	CO ₂
Limestone	47	7-55					37-43
Clay			45-78	10-26	3-9		
Silica			77-96				
Iron-ore					40-90		
Gypsum	2	6-41			37-59		
Cements							(%)
		CaO	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	SO ₃	Others
Portland cement 63		63-65	20-23	3.8-5.8	2.5-3.6	1.5-2.3	

7.0-9.5

24-27

52-58


1.6-2.5

1.2-2.6

Blended cement

BF slag

Temperature Profile in Wet Process Kiln

Chemistry of Cement Process

	Heating ()	
. .	100 ~ 110	Vaporization of physically adsorbed water
Drying	110~700	Vaporization of chemically bonded water
	700 ~ 750	Decomposition of MgCO ₃
Calcining	750 ~ 900	Decomposition of CaCO ₃ , Formation of 2CaO [,] SiO ₂
	950 ~ 1200	Transition to · 2CaO·SiO ₂
	1200 ~ 1300	Formation of 3CaO · Al2O3, 4CaO · Al2O3 · Fe2O3
Sintering v	1300 ~ 1450	Formation of 2CaO · SiO ₂ , Sintering of Al ₂ O ₃ , Fe ₂ O ₃ , Na ₂ O, K ₂ O, etc
		During a course of cooling, pebble-like black colored clinker is formed, which consists of the following components;
Cooling	150 ~ 200	3CaO · SiO ₂ : Referred to as Alite or C3S
~		2CaO·SiO ₂ : Referred to as Belite or C2S
		3CaO · Al ₂ O ₃ : Referred to as aluminate phase or C3A
		4CaO · Al2O3 · Fe2O3: Referred to as ferrite phase or C4AF

Raw Materials and Energy required for production of <u>1 ton of Cement</u>

Raw Materials (kg)			
Limestone	1,095		
Clay	204		
Silica	78		
Iron-ore	30		
Gypsum	34		
Total	1,439		

Energy Consumption				
Fuel (*1)	105			
Electric power (kWh)	99			
(*1) : kg of coal equivalent, where HHV of coal is 6,200 kcal/kg (= 25,958kJ/kg)				

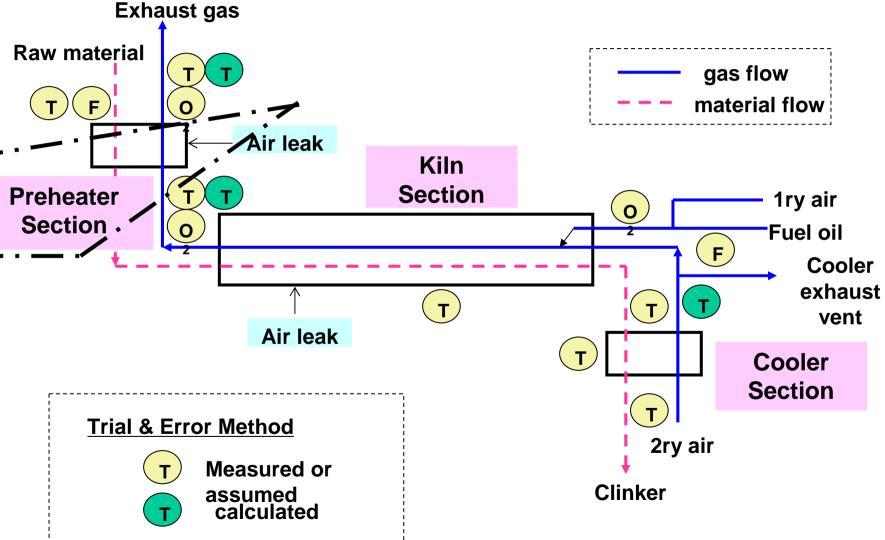
Fuel by kind (%)				
Coal	78			
Petroleum coke	13			
Combustible waste	5			
Heavy oil	4			

Base : 1 ton of cement

Heat Requirement in Burning Section

Kiln	kcal/kg-cl	Source (1)	m³ _N /kg-cl (2)	
Shaft kiln	940	Yogyo Kogaku H/B	1.65	
Dry long kiln	1,487	JCA (1961)	2.62	
Wet kiln	1,357	"	2.38	
Lepol kiln	954	"	1.68	
SP kiln	797	JCA (1981)	1.40	
NSP kiln	773	"	1.35	
Note 1: JCA: Japan Cement Association				

2: Estimated based on 1.40 m³N/kg-cl in SP kiln


Energy Management System (Cement Factory)

Aspect		Major Activity
Organization	Accountability	Employee education (awareness)
	Organization	EE&C promotion committee Energy manager
Monitoring	Monitoring	Data recording & reporting to employee
	Targeting	Specific energy consumption (SEC) Key efficiency parameters
Technology		Technical review (energy audit)
Operation & maintenance	House keeping	Product yield (avoid off-spec product)
(O&M)		Preventive maintenance (avoid unscheduled shutdown)

Energy Saving Measures in Cement Factory

	Raw material section	Clinker burning section	Finishing section
First step	 Selection of raw materials Management of particle fineness Management of grinding media 	 Prevention of unscheduled shutdown Selection of fuel Prevention of leakage 	 Management of particle fineness Management of grinding media
Second step	 Replacement of fan rotor Improvement of temperature and pressure control system Improvement of mixing & homogenization system Installation of closed circuit mill (separator) 	 Use of industrial waste (waste tire, etc) Heat recovery of pre-heater exhaust gas and cooler exhaust gas (drying of raw material and generation of electricity) Replacement of cooler dust collection from multiclone to EP 	 Installation of closed circuit mill (separator) Installation of feed control system
Third step	 Conversion from wet process to dry process Replacement of ball or tube mill by vertical roller mill Pneumatic transfer of raw material to mechanical transfer 	 Conversion of fuel from petroleum to coal Conversion of SP to NSP Conversion of planetary cooler to grate cooler 	1) Use of industrial waste (slag, pozzolan) 9

Boundary of Heat Balance

Collecting Data (Wet Process)-1

Dry raw material (dry RM)	t/h	
Water content in wet raw material	wt% on wet RM	(40)
Clinker yield	-	(0.65)
Clinker temp at cooler exit	deg C	
Heat of clinkering (calcination & sintering)	kcal/kg-cl	
Specific heat of clinker (Cp)	kcal/kg-cl [,] deg C	0.192
Fuel rate (kiln)	m³n/h	
Specific gravity of fuel	kg/m³ℕ	
Specific heat of fuel (Cp)	kcal/kg [,] deg C	
Low heat value of fuel	kcal/m³N	
Fuel temperature	deg C	
Fuel rate (precalciner)	kg/m³ℕ	
Exhaust gas temp at kiln or preheater exit	deg C	
O2 in exhaust gas	Vol %	
CO ₂ generation in calcination	m³ <mark>ʌ/kg-cl</mark>	0.27
Specific heat of exhaust gas	kcal/m3N · deg C	0.338 1

Collected Data (Wet Process)-2

Kiln surface temperature (average)	Deg C	
Kill Sullace temperature (average)	-	
Surface area	m²	
Convection coefficient (hc)	kcal/m ² · hr · deg C	(10.9)
Radiation coefficient (hr)	kcal/m ² · hr · deg C	(21.0)
Emissivity	-	0.95
Preheater surface temperature (average)	deg C	NA
Surface area	m²	NA
Convection coefficient (hc)	kcal/m ² · hr · deg C	(10.0)
Radiation coefficient (hr)	kcal/m ² · hr · deg C	(19.1)
Emissivity	-	0.95
Cooler surface temperature (average)	deg C	
Surface area	m²	
Convection coefficient (hc)	kcal/m ² · hr · deg C	(13.0)
Radiation coefficient (hr)	kcal/m ² · hr · deg C	(25.0)
Emissivity	-	0.95
Ambient temperature (outdoor)	deg C	

Items Listed on Heat Balance Table

Heat Input		Heat Output		
Heat of combustion of fuel	I1	Heat for clinkering	01	
Sensible heat of fuel	12	Sensible heat of clinker at cooler exit	02	
Sensible heat of wet raw material	13	Sensible heat of cooler exhaust vent	03	
Sensible heat of combustion air	14	Heat for evaporating water in raw material	04	
		Sensible heat of kiln or preheater exhaust gas	05	
		Radiation heat on kiln surface	06	
		Radiation heat on preheater surface	07	
		Radiation heat on cooler surface	08	
		Unaccountable heat losses	09	
Base of temperature : Ambient air temperature				
Base of heat amount : kcal per kg of clin	ker (k	cal/kg-cl)		

Thank you!