K-SAAT

Breakthrough Solid Acid Alkylation Technology

(?

¢

BR

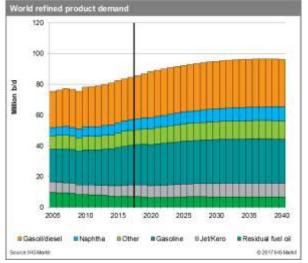
Proud history, bright future.

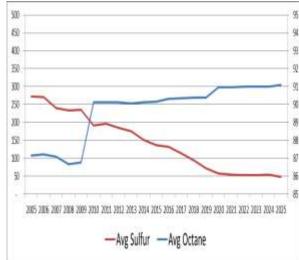
The worldwide gasoline market is changing.

Gasoline Market Overview

Demand

- Gasoline demand is steady or increasing across the globe
- More cars in emerging markets
- Stricter environmental standards
- Stringent blend requirements
- High premium on low RVP


Sulfur


- Global environmental regulations require lower sulfur gasoline
- Hydrotreating lowers sulfur and octane
- Gasoline blending pool components to increase octane
 - Alkylate
 - Isomerizate
 - Ethanol
 - Reformate
 - Etc.


Octane

- High-octane gasoline demand is rising
- North America and Western Europe are considering replacing legacy alkylate production units
- Availability of cheaper feedstock is driving new applications
- Developing countries are demanding higher octane

Current Primary Market Octane Grade in Countries

©2019 KBR Inc. All Rights Reserved.

Alkylate is the preferred premium gasoline blendstock.

Alkylate – Liquid Gold

- High octane
- Low RVP
- Low sulfur
- No aromatics
- No olefins

Proud history, bright future.

©2019 KBR Inc. All Rights Reserved.

Gasoline Blend Components

	C ₄	LSR	Isomerate	Poly Gasoline	FCC Light Naphtha	FCC Heavy Naphtha	Alkylate	Reformate	Ethers	Ethanol
RON	-			+	+	-	+ +	+ +	+ +	+ +
MON	+			-	-		+ +	+ +	+ +	+ +
RVP				+ +		+ +	+ +	+ +	+ +	
E70				+ +		+ +	+ +	+ +	+	
Olefins	+	+ +	+ +			-	+ +	+ +	+ +	+ +
Aromatics	+ +	+ +	+ +	+ +	+ +	+	++		+ +	++
Benzene	+ +	?	+ +	+ +	-	+ +	+ +	?	+ +	+ +
Oxygen	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +		

Alkylate is the preferred premium gasoline blendstock.

Current alkylate technologies have significant challenges.

Alkylate Production Challenges

- Liquid-Acid Catalyst Processes
 - Handling
 - Corrosion
 - HSE
 - Permitting
 - Maintenance expense
- Conventional Solid-Acid Catalyst Processes
 - Poor stability
 - Expensive processes
 - Large inventories
- Limited feed stock flexibility

New technology overcomes these old challenges.

Solid Acid Alkylation Technology

Next generation solid acid alkylation technology.

High Alkylate Yield + High Octane Numbers High Feed Flexibility Safer, Simpler, More Reliable ExSact[™] Solid Catalyst Low CAPEX/OPEX

High Alkylate Yield + High Octane Numbers

Technology Comparison: Typical MTBE Raffinate Feed

	K-SAAT	Sulfuric Acid	HF Acid	
Alkylate RON	99+	98	95 - 96	
Alkylate Yield (vol/vol Olefin)	1.88	1.77	1.78	
Eliminates Acid Soluble Oils?	Yes	No	No	
Eliminates Liquid Effluents?	Yes	No	No	
CAPEX	1.0	1.6	-	
OPEX	1.0	1.6	-	

K-SAAT Product Quality

- Typically >1 point higher octane than liquid acids
- Typical values for potential olefinic feeds:

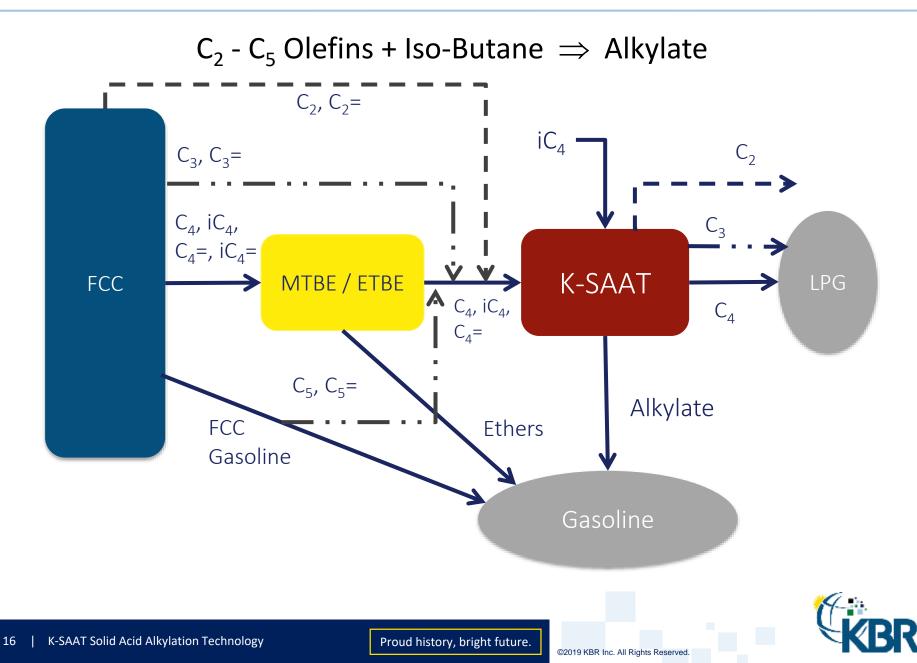
	Feed	Ethylene*	Propylene (70% C ₃ =)	MTBE Raffinate	Butenes (30% i-C ₄ =)	Amylenes	
	RON	99	92	99	97	91	
1	MON	94.5	90	95	93	89	

*Liquid acid catalyst will not alkylate ethylene

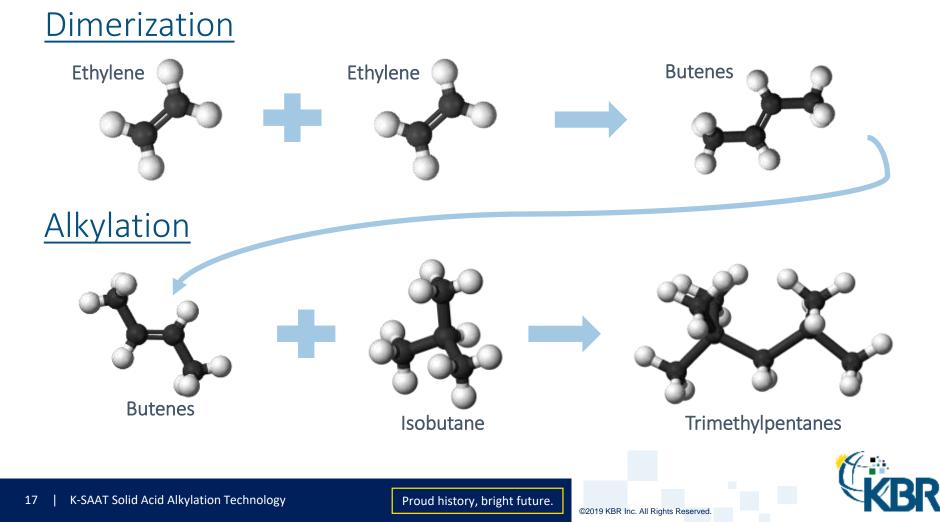
©2019 KBR Inc. All Rights Reserved

High Feed Flexibility

1670


Feed Flexibility

- Simpler reactor design
- No refrigeration or acid handling
- Lower power consumption
- Inexpensive regeneration
- High tolerance for impurities



Feed Flexibility

K-SAAT Flexibility

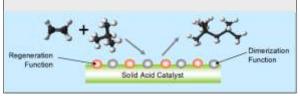
- K-SAAT can alkylate ethylene up to 100% purity
 - Dimerization and alkylation steps in one reactor

The key is ExSact[™] Solid Acid Catalyst.

ExSact[™] Catalyst

- Zeolite-based catalyst
- Selective to high-octane TMPs
- Eliminates acid-soluble oils
- Guaranteed 5-year life
- >24-hour cycle length

Advantages of the ExSact[™] Catalyst


Engineered Catalyst

- Optimized particle size and shape
- Optimized Pore Structure on a micro and macro scale
- Optimized Acid Site Strength & Distribution

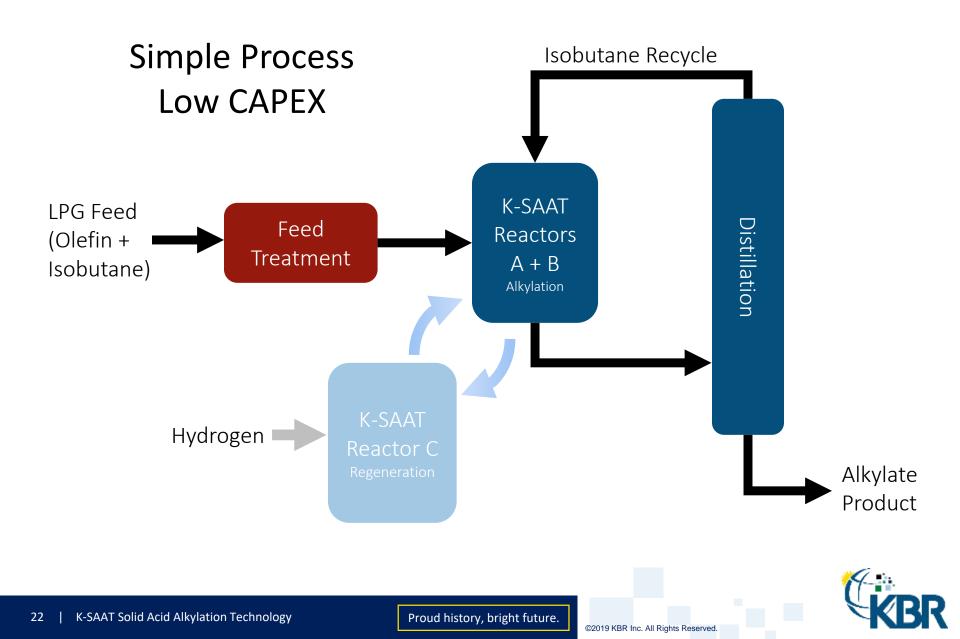
Optimized Reactions

- Improved mass transfer to prevent pore blockage
- Promotes alkylation over polymerization reactions
- Highly selective to 2,3,3and 2,3,4trimethylpentane*
- Minimal isomerization of trimethylpentanes to dimethylhexanes

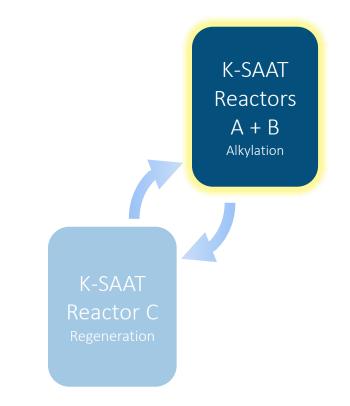
* 2,3,3- and 2,3,4-trimethylpentane research octane >100

Superior Yield & Octane

- Higher catalyst activity
- Longer cycle length (24 hr)
- Longer catalyst life (5 yr)
- Higher alkylate octane
- Simplified process design

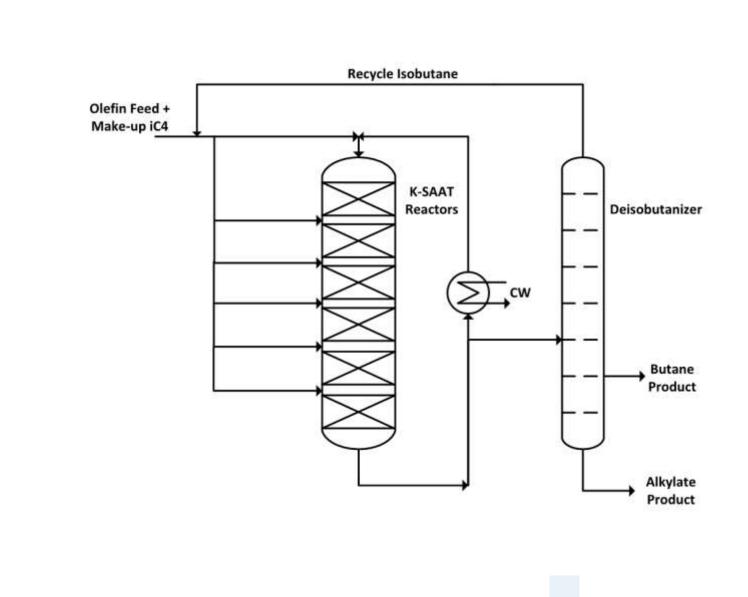


K-SAAT Process – Safer, Simpler, More Reliable.

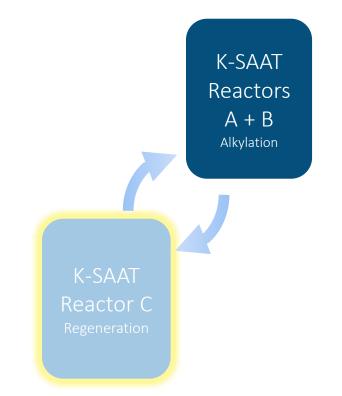


K-SAAT Process Scheme

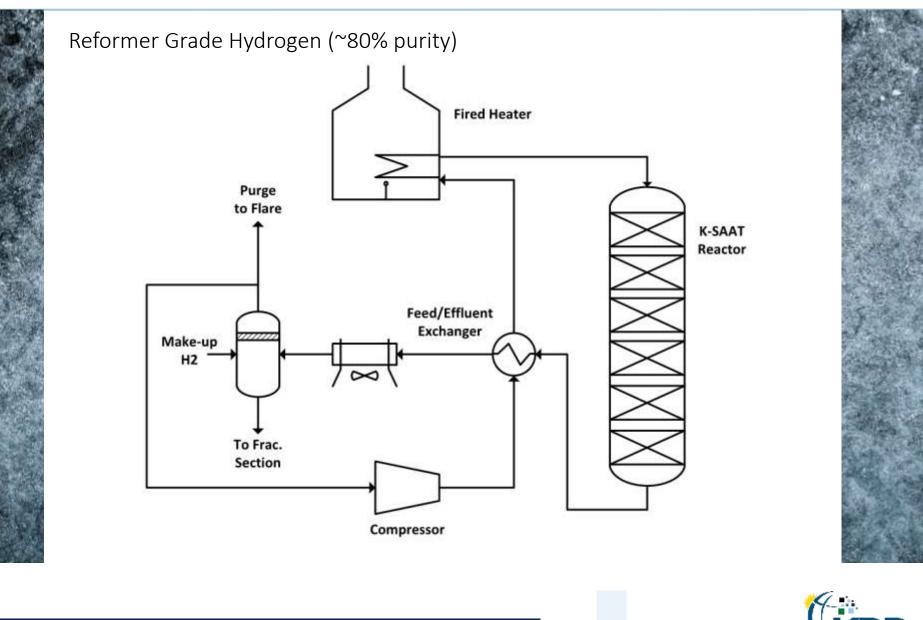
K-SAAT Reaction


- Typically 3 fixed-bed reactors
- 24-hour cycle length
- Isobutane/olefin ratio ~10
- 20 barg & 50°C (290 psig & 120°F)
 - Moderate temperature favors alkylation over polymerization reactions
 - No refrigeration required
- No liquid effluents or ASOs
- Reactor material: low alloy steel

©2019 KBR Inc. All Rights Reserved.


Process Scheme

KBR


K-SAAT Regeneration

- 12 hour regeneration cycle
- Hot hydrogen regeneration:
 - 20 barg & 275°C (290 psig & 525°F)
 - Hydrogen requirement: 0.87 kg/MT alkylate (0.2 lb/BBL alkylate)
- Reformer grade hydrogen (~80% purity)
- Fired or MV Electric Heater

Process Scheme – Regeneration

Commercial References

References

Solid Acid Alkylation Technology

Next generation solid acid alkylation technology.

High Alkylate Yield + High Octane Numbers High Feed Flexibility Safer, Simpler, More Reliable ExSact[™] Solid Catalyst Low CAPEX/OPEX

K-SAAT

Breakthrough Solid-Catalyst Alkylation Technology

